Giải bài tập 4.43 trang 39 SGK Toán 12 tập 2 - Cùng khám phá


Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát có vận tốc tại thời điểm \(t\) giây là \(v = 4\cos (t)\) (cm/s). Tìm li độ của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}\) giây, biết khi \(t = \frac{\pi }{2}\) giây thì con lắc có li độ \(x = 4\) cm.

Đề bài

Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát có vận tốc tại thời điểm \(t\) giây là \(v = 4\cos (t)\) (cm/s). Tìm li độ của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}\) giây, biết khi \(t = \frac{\pi }{2}\) giây thì con lắc có li độ \(x = 4\) cm.

A. \(\sqrt 3 \)cm.

B. 2 cm.

C. \(2\sqrt 3 \) cm.

D. 4 cm.

Phương pháp giải - Xem chi tiết

Chúng ta có thể sử dụng phương trình tích phân để tính li độ tại thời điểm \(t = \frac{{2\pi }}{3}\).

\(x\left( {\frac{{2\pi }}{3}} \right) - x\left( {\frac{\pi }{2}} \right) = \int_{\frac{\pi }{2}}^{\frac{{2\pi }}{3}} v (t){\mkern 1mu} dt\)

Trong đó, \(v(t) = 4\cos (t)\) là phương trình vận tốc của con lắc.

Lời giải chi tiết

Tính tích phân của \(4\cos (t)\):

\(\int 4 \cos (t){\mkern 1mu} dt = 4\sin (t)\)

Áp dụng cận tích phân từ \(\frac{\pi }{2}\) đến \(\frac{{2\pi }}{3}\):

\(x\left( {\frac{{2\pi }}{3}} \right) - x\left( {\frac{\pi }{2}} \right) = 4\left( {\sin \left( {\frac{{2\pi }}{3}} \right) - \sin \left( {\frac{\pi }{2}} \right)} \right) = 4\left( {\frac{{\sqrt 3 }}{2} - 1} \right) = 2\sqrt 3  - 4\)

Tính \(x\left( {\frac{{2\pi }}{3}} \right)\). Ta biết rằng \(x\left( {\frac{\pi }{2}} \right) = 4\), do đó:

\(x\left( {\frac{{2\pi }}{3}} \right) = x\left( {\frac{\pi }{2}} \right) + \left( {2\sqrt 3  - 4} \right)\)

\(x\left( {\frac{{2\pi }}{3}} \right) = 4 + 2\sqrt 3  - 4 = 2\sqrt 3 \)

Li độ của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}\) giây là \(2\sqrt 3 \) cm.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 4.42 trang 39 SGK Toán 12 tập 2 - Cùng khám phá

    Một cái cổng hình parabol như Hình 4.31. Chiều cao \(GH = 4{\mkern 1mu} {\rm{m}}\), chiều rộng \(AB = 4{\mkern 1mu} {\rm{m}},AC = BD = 0,9{\mkern 1mu} {\rm{m}}\). Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm với giá 1.200.000 đồng/m², phần còn lại làm khung hoa sắt với giá 900.000 đồng/m².

  • Giải bài tập 4.41 trang 38 SGK Toán 12 tập 2 - Cùng khám phá

    Một vật chuyển động trong 3 giờ với vận tốc \(v\) (km/h) phụ thuộc vào thời gian \(t\) (h) có đồ thị là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung như Hình 4.30. Tính quãng đường mà vật di chuyển được trong 3 giờ đó. A. \(25,25{\mkern 1mu} {\rm{km}}\) B. \(24,25{\mkern 1mu} {\rm{km}}\) C. \(24,75{\mkern 1mu} {\rm{km}}\) D. \(26,75{\mkern 1mu} {\rm{km}}\)

  • Giải bài tập 4.40 trang 38 SGK Toán 12 tập 2 - Cùng khám phá

    Gọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{2x}},y = 0,x = 0\) và \(x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng: A. \(\pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx\) B. \(\pi \int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) C. \(\int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) D. \(\int_0^1 {{e^{4x}}} {\mkern 1mu} dx\)

  • Giải bài tập 4.39 trang 38 SGK Toán 12 tập 2 - Cùng khám phá

    Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - x,y = {x^3} - {x^2}\) và các đường thẳng \(x = - 2,x = 1\).

  • Giải bài tập 4.38 trang 38 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = f(x),y = 0,x = - 1\) và \(x = 5\) (Hình 4.29). Mệnh đề nào sau đây dúng?

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí