Giải bài tập 4.36 trang 37 SGK Toán 12 tập 2 - Cùng khám phá>
Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\)
Đề bài
Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là:
A. \(2{x^2} - \frac{1}{x} + C\)
B. \(2{x^2} + \frac{1}{x} + C\)
C. \(4 - \frac{2}{{{x^3}}} + C\)
D. \(4 + \frac{2}{{{x^3}}} + C\)
Phương pháp giải - Xem chi tiết
- Phân tích biểu thức \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) thành tổng của các hàm phân số đơn giản hơn.
- Tìm nguyên hàm của các thành phần sau khi phân tích.
Lời giải chi tiết
Phân tích hàm số:
\(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}} = \frac{{4{x^3}}}{{{x^2}}} + \frac{1}{{{x^2}}} = 4x + \frac{1}{{{x^2}}}\)
Tìm nguyên hàm:
\(F(x) = \int {\left( {4x + \frac{1}{{{x^2}}}} \right)} dx = 2{x^2} - \frac{1}{x} + C\)
Chọn A.
- Giải bài tập 4.37 trang 37 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.38 trang 38 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.39 trang 38 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.40 trang 38 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.41 trang 38 SGK Toán 12 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá