Bài tập cuối chương 5 - Toán 12 Cùng khám phá

Bình chọn:
4.6 trên 68 phiếu
Bài 5.34 trang 84

Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0). a) Viết phương trình mặt phẳng (BCD). Suy ra A.BCD là một hình chóp. b) Tính chiều cao AH của hình chóp A.BCD. c) Viết phương trình mặt phẳng \((\alpha )\) chứa AB và song song với CD.

Xem lời giải

Bài 5.35 trang 84

Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1). Tìm góc giữa: a) Hai mặt phẳng (ABC) và (BCD); b) Hai đường thẳng AB và CD; c) Đường thẳng AB và mặt phẳng (BCD).

Xem lời giải

Bài 5.36 trang 84

Viết phương trình tham số của đường thẳng a) Đi qua hai điểm (A(1;0; - 3)) và (B( - 3;1;0)). b) Đi qua điểm (M(2;3; - 5)) và song song với đường thẳng (Delta ): (left{ {begin{array}{*{20}{l}}{x = - 2 + 2t}{y = 3 - 4t}{z = - 5tquad (t in mathbb{R})}end{array}} right.)

Xem lời giải

Bài 5.37 trang 84

Cho mặt phẳng (\(\alpha \)): 2x − y + 2z + 11 = 0 và điểm M(1; −1; 2). a) Viết phương trình mặt phẳng (\(\beta \)) chứa điểm M và song song với (\(\alpha \)). b) Tính khoảng cách từ điểm M đến mặt phẳng (\(\alpha \)).

Xem lời giải

Bài 5.38 trang 84

Cho mặt cầu (S) có đường kính là AB, biết rằng A(6; 2; −5), B(−4; 0; 7). a) Tìm toạ độ tâm I và tính bán kính r của mặt cầu (S). b) Viết phương trình của mặt cầu (S).

Xem lời giải

Bài 5.39 trang 84

Người ta mô phỏng thiết kế của một bình chứa nhiên liệu có dạng một hình chóp cụt tứ giác đều trong hệ trục Oxyz như Hình 5.39 với (S(0;0;0)), (P(10;0;0)), (Q(10;10;0)), (R(8;8;12)), (T(2;2;12)). a) Viết phương trình các mặt phẳng chứa các mặt bên của bình. b) Tính (sin ) của góc giữa cạnh bên và mặt đáy. c) Tính (cos ) của góc giữa các mặt bên.

Xem lời giải

Bài 5.40 trang 85

Trong các chương trình đồ hoạ máy tính, để tạo ảo giác theo đúng phối cảnh, các vật ở càng gần thì càng lớn hơn các vật ở xa, các hình ảnh ba chiều trong bộ nhớ của máy tính được chiếu lên một màn hình hình chữ nhật từ điểm nhìn của mắt hoặc máy chiếu.

Xem lời giải

Bài 5.41 trang 85

Một sân hình chữ nhật ABCD có chiều dài AD = 20 m, chiều rộng AB = 15 m. Người ta đặt một camera ở độ cao 5 m trên một cây cột vuông góc với mặt sân tại A, biết camera có bán kính quan sát là 25 m. Xét hệ trục toạ độ Oxyz với gốc toạ độ O trùng với điểm A chân cột, các tia Ox, Oy lần lượt chứa các cạnh AB, AD của sân và tia Oz chứa cây cột.

Xem lời giải

Bài 5.42 trang 85

Một tháp phát sóng cao 50 m đặt ở góc A của sân hình chữ nhật ABCD. Để giữ cho tháp không bị đổ, người ta có cột rất nhiều dây cáp quanh tháp và cố định tại các vị trí trên mặt đất. Hai chú kiến vàng và kiến đen bắt đầu leo lên hai dây cáp CM và BN (từ C và B) với vận tốc lần lượt là 3 m/phút và 2,5 m/phút. Hỏi sau 10 phút thì hai chú kiến cách nhau bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?

Xem lời giải

Bài 5.43 trang 86

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1, với A(0; 0; 0), D(1; 0; 0), B(0; 1; 0), A’(0; 0; 1). a) Chứng minh \(A'C \bot (AB'D')\). b) Chứng minh \((AB'D')//(C'BD)\)và tính khoảng cách giữa hai mặt phẳng \((AB'D')\) và \((C'BD)\). c) Tính côsin của góc giữa hai mặt phẳng \((DA'C')\) và \((ABB'A')\).

Xem lời giải

Bài 5.44 trang 86

Cho hình chóp S.ABCD với ABCD là hình chữ nhật có A(0; 0; 0), B(1; 0; 0), D(0; 3; 0), S(0; 0; 2). a) Tính khoảng cách từ A đến mặt phẳng (SBD). b) Tính sin của góc giữa đường thẳng SD và mặt phẳng (SAB). c) Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD).

Xem lời giải

Bài 5.45 trang 86

Cho hai điểm A(1; 3; 0) và B(5; 1; −2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

Xem lời giải

Bài 5.46 trang 86

Cho mặt phẳng (left( alpha right)) đi qua điểm M(0; 0; −1), có cặp vectơ chỉ phương là (vec a = left( { - 1;2; - 3} right)) và (vec b = left( {3;0;5} right)). Phương trình của mặt phẳng (left( alpha right)) là

Xem chi tiết

Bài 5.47 trang 86

Cho ba điểm A(3; 0; 1), B(0; 2; 1), C(1; 0; 0). Phương trình của mặt phẳng (ABC) là A. \(2x - 3y - 4z + 2 = 0\) B. \(2x + 3y - 4z - 2 = 0\) C. \(4x + 6y - 8z + 2 = 0\) D. \(2x - 3y - 4z + 1 = 0\)

Xem lời giải

Bài 5.48 trang 86

Cho điểm M(3; −1; −2) và mặt phẳng \((\alpha )\): 3x − y + 2z + 4 = 0. Mặt phẳng đi qua M và song song với \((\alpha )\)có phương trình là A. \(3x + y - 2z - 14 = 0\) B. \(3x - y + 2z + 6 = 0\) C. \(3x - y + 2z - 6 = 0\) D. \(3x - y - 2z + 6 = 0\)

Xem lời giải

Bài 5.49 trang 87

Cho mặt phẳng ((alpha )): 2x + y − 3z + 8 = 0. Mặt phẳng nào sau đây vuông góc với mặt phẳng ((alpha ))? A. x – 3y + 3z – 7 = 0 B. 3x – 3y + z – 7 = 0 C. x + 2y – z – 8 = 0 D. x – 2y + z + 8 = 0

Xem lời giải

Bài 5.50 trang 87

Cho đường thẳng \(\Delta \) đi qua điểm \(M(2;0; - 1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). Phương trình tham số của đường thẳng \(\Delta \) là: \({\rm{A}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{B}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = - 3}\\{z = - 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) \({\rm{C}}{\rm{. }}\left\{ {\begin{array}{*{20}{l}}{x = 2 +

Xem lời giải

Bài 5.51 trang 87

Cho hai điểm \(A(1; - 2; - 3)\), \(B( - 1;4;1)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với \(d\)? \({\rm{A}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\) \({\rm{B}}{\rm{. }}d':\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\) \({\rm{C}}{\rm{. }}d':\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)

Xem lời giải

Bài 5.52 trang 87

Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{

Xem lời giải

Bài 5.53 trang 87

Cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 2 + 3t}\\{z = 3 + 4t\quad (t \in \mathbb{R})}\end{array}} \right.\) và \({d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 4t'}\\{y = 5 + 6t'}\\{z = 7 + 8t'\quad (t' \in \mathbb{R})}\end{array}} \right.\). Trong các mệnh đề sau, mệnh đề nào đúng? A. \({d_1}\) và \({d_2}\) cắt nhau. B. \({d_1}\parallel {d_2}\). C. \({d_1} \equiv {d_2}\). D. \({d_1}\) và \({d_2}\) chéo nhau.

Xem lời giải

Xem thêm