Giải bài tập 4.32 trang 37 SGK Toán 12 tập 2 - Cùng khám phá


Một bồn chứa nước bắt đầu bị rỉ từ đáy. Tốc độ nước chảy ra từ đáy bồn tại thời điểm \(t\) phút được cho bởi hàm số \(V'(t) = 200 - 4t\)(lít/phút) với \(0 \le t \le 50\) và \(V(t)\) là hàm số cho biết thể tích nước trong bồn tại thời điểm \(t\). Tính lượng nước chảy ra khỏi bồn trong 10 phút đầu tiên từ khi bồn bị rỉ nước.

Đề bài

Một bồn chứa nước bắt đầu bị rỉ từ đáy. Tốc độ nước chảy ra từ đáy bồn tại thời điểm \(t\) phút được cho bởi hàm số \(V'(t) = 200 - 4t\)(lít/phút) với \(0 \le t \le 50\) và \(V(t)\) là hàm số cho biết thể tích nước trong bồn tại thời điểm \(t\). Tính lượng nước chảy ra khỏi bồn trong 10 phút đầu tiên từ khi bồn bị rỉ nước.

Phương pháp giải - Xem chi tiết

Tính lượng nước chảy ra trong 10 phút đầu tiên bằng cách tích phân tốc độ nước chảy ra \(V'(t)\) trên khoảng thời gian \(t \in [0,10]\).

Lời giải chi tiết

Đặt hàm số tốc độ nước chảy:

\(V'(t) = 200 - 4t\)

Hàm số \(V(t)\) cho biết thể tích nước chảy ra khỏi bồn sẽ là tích phân của \(V'(t)\) theo \(t\).

\(V(10) - V(0) = \int_0^{10} {(200 - 4t)} {\mkern 1mu} dt\)

Tính tích phân:

\(\int {(200 - 4t)} {\mkern 1mu} dt = 200t - 2{t^2}\)

Áp dụng cận từ 0 đến 10:

\(V(10) - V(0) = \left[ {200t - 2{t^2}} \right]_0^{10} = (200 \times 10 - 2 \times {10^2}) - (200 \times 0 - 2 \times {0^2})\)

\(V(10) - V(0) = (2000 - 200) - 0 = 1800{\mkern 1mu} \)

Lượng nước chảy ra khỏi bồn trong 10 phút đầu tiên là \(1800{\mkern 1mu} \) lít.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 4.33 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Trong kinh tế, nếu hàm số \(C(x)\) là tổng chi phí khi sản xuất \(x\) đơn vị hàng hóa nào đó thì tốc độ thay đổi tức thời của chi phí theo số lượng sản phẩm được sản xuất \(C'(x)\) được gọi là chi phí biên. Chi phí biên \(C'(n)\) là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ \(n\) sản phẩm lên \(n + 1\) sản phẩm. Giả sử chi phí biên khi sản xuất \(x\) sản phẩm của một công ty là \(C'(x) = 2x + 80\) (USD/ sản phẩm) thì tổng chi phí sản xuất tăng lên bao nhiêu nếu sản phẩm sản xuất ra tăng từ

  • Giải bài tập 4.34 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Tốc độ tăng cân nặng của một bé gái trong độ tuổi từ 0 đến 36 tháng được ước tính bởi hàm số \(f'(t) = 0,00093{t^2} - 0,04792t + 0,76806{\mkern 1mu} \) (kg/tháng) với \(f(t)\) là cân nặng của bé gái lúc \(t\) tháng tuổi. Hãy ước tính cân nặng của một bé gái 5 tháng tuổi, biết cân nặng trung bình của bé gái khi mới sinh là \(3,3{\mkern 1mu} {\rm{kg}}\).

  • Giải bài tập 4.35 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x) = \frac{2}{x}\), biết \(F(1) = 2\). Giá trị của \(F(3)\) bằng: A. \(2 + 2\ln 3\) B. \(2 + \ln 3\) C. \(2 - 2\ln 3\) D. \(2 - \ln 3\)

  • Giải bài tập 4.36 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\)

  • Giải bài tập 4.37 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

    Cho hàm số \(f(x)\) liên tục trên đoạn \([1;2]\) và \(\int_1^2 {\left[ {4f(x) - 2x} \right]} dx = 1\). Khi đó \(\int_1^2 f (x)dx\) bằng: A. \( - 1\) B. \( - 3\) C. \(3\) D. \(1\)

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí