Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức>
Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.
Lời giải chi tiết
Chứng minh: Nếu tứ giác ABCD là hình bình hành thì \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Gọi O là tâm hình bình hành ABCD. Khi đó, O là trung điểm của AC, BD.
Suy ra \(\overrightarrow {OC} = - \overrightarrow {OA} ,\overrightarrow {OD} = - \overrightarrow {OB} \)
Ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OC} = 2\overrightarrow {SO} + \left( {\overrightarrow {OA} - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)
\(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OD} = 2\overrightarrow {SO} + \left( {\overrightarrow {OB} - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)
Do đó, \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Chứng minh: Nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \) thì tứ giác ABCD là hình bình hành:
Ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \Leftrightarrow \overrightarrow {SA} - \overrightarrow {SB} = \overrightarrow {SD} - \overrightarrow {SC} \Leftrightarrow \overrightarrow {BA} = \overrightarrow {CD} \)
Suy ra, hai vectơ \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng và có độ lớn bằng nhau.
Suy ra, \(AB = CD,\) AB//CD. Khi đó, tứ giác ABCD là hình bình hành.
Vậy tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
- Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.3 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.1 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức