Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức


Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \). 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a  = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết

Chứng minh: Nếu tứ giác ABCD là hình bình hành thì \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)

Gọi O là tâm hình bình hành ABCD. Khi đó, O là trung điểm của AC, BD.

Suy ra \(\overrightarrow {OC}  =  - \overrightarrow {OA} ,\overrightarrow {OD}  =  - \overrightarrow {OB} \)

Ta có: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OC}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OA}  - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)

\(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SO}  + \overrightarrow {OB}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OB}  - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)

Do đó, \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)

Chứng minh: Nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \) thì tứ giác ABCD là hình bình hành:

Ta có: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD}  \Leftrightarrow \overrightarrow {SA}  - \overrightarrow {SB}  = \overrightarrow {SD}  - \overrightarrow {SC}  \Leftrightarrow \overrightarrow {BA}  = \overrightarrow {CD} \)

Suy ra, hai vectơ \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng và có độ lớn bằng nhau.

Suy ra, \(AB = CD,\) AB//CD. Khi đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí