

Giải bài tập 2.2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = 2,AD = 3) và (AA' = 4). Tính độ dài của các vectơ (overrightarrow {BB'} ,overrightarrow {BD} ) và (overrightarrow {BD'} ).
Đề bài
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=2,AD=3AB=2,AD=3 và AA′=4. Tính độ dài của các vectơ →BB′,→BD và →BD′.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về độ dài vectơ để tính: Độ dài của vectơ trong không gian là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. Độ dài của vectơ →a được kí hiệu là |→a|.
Lời giải chi tiết
Vì B’BAA’ là hình chữ nhật nên BB′=AA′=DD′=4⇒|→BB′|=4.
Vì tứ giác ABCD là hình chữ nhật nên tam giác BAD vuông tại A.
Do đó, BD=√AB2+AD2=√22+32=√13 (định lí Pythagore), suy ra: |→BD|=√13.
Vì BB’D’D là hình chữ nhật nên tam giác DD’B vuông tại D.
Theo định lí Pythagore ta có: BD′=√BD2+DD′2=√13+42=√29⇒|→BD′|=√29.


- Giải bài tập 2.1 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.3 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức