TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Bắt đầu sau
  • 18

    Giờ

  • 16

    Phút

  • 24

    Giây

Xem chi tiết

Giải Bài 82 trang 92 sách bài tập toán 7 - Cánh diều


Cho tam giác ABC vuông tại C có ˆCAB=60°CAB^=60° , AE là tia phân giác của góc CAB (E ∈ BC). Gọi D là hình chiếu của B trên tia AE, K là hình chiếu của E trên AB. Chứng minh:

Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Cho tam giác ABC vuông tại C có CAB^=60, AE là tia phân giác của góc CAB (E ∈ BC). Gọi D là hình chiếu của B trên tia AE, K là hình chiếu của E trên AB. Chứng minh:

a) EB là tia phân giác của góc DEK, EK là tia phân giác của góc BEA;

b) EC = ED = EK.

Phương pháp giải - Xem chi tiết

- Chứng minh: KEB^=DEB^ suy ra EB là tía phân giác của góc DEK, KEA^=KEB^ suy ra EK là tia phân giác của góc BEA.

- Chứng minh: ∆ACE = ∆AKE (cạnh huyền – góc nhọn) suy ra CE = KE và chứng minh ∆EKB = ∆EDB (cạnh huyền – góc nhọn) suy ra EK = ED. Từ đó suy ra EC  = ED = EK.

Lời giải chi tiết

 

a) Tam giác ABC vuông tại C có CAB^+CBA^=90 (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra CBA^=90CAB^=9060=30.

Tam giác EBK vuông tại K có (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra KEB^=90KBE^=9030=60.

•Vì AE là tia phân giác của góc CAB nên CAE^=BAE^=12CAB^=12.60=30.

Tam giác ACE vuông tại C có CEA^+CAE^=90 (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra CEA^=90CAE^=9030=60

Do đó DEB^=CEA^=60 (hai góc đối đỉnh).

Ta có KEB^=DEB^ (cùng bằng 60°) nên EB là tia phân giác của góc DEK.

•Ta có KEA^+KED^=180 (hai góc kề bù)

Hay KEA^+KEB^+BED^=180

Suy ra KEA^=180KEB^BED^=1806060=60

Do đó KEA^=KEB^ (cùng bằng 60°).

Nên EK là tia phân giác của góc BEA.

Vậy EB là tia phân giác của góc DEK, EK là tia phân giác của góc BEA.

b) Xét ∆ACE và ∆AKE có:

ACE^=AKE^(=90)

AE là cạnh chung,

CAE^=KAE^ (chứng minh câu a).

Do đó ∆ACE = ∆AKE (cạnh huyền – góc nhọn).

Suy ra CE = KE (hai cạnh tương ứng) (1)

Xét ∆EKB và ∆EDB có:

EKB^=EDB^(=90)

BE là cạnh chung,

KEB^=DEB^ (chứng minh câu a)

Do đó ∆EKB = ∆EDB (cạnh huyền – góc nhọn).

Suy ra KE = DE (hai cạnh tương ứng) (2)

Từ (1) và (2) ta có EC = EK = ED.

Vậy EC = ED = EK.


Bình chọn:
4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.