Giải Bài 8 trang 34 sách bài tập toán 7 - Chân trời sáng tạo


Cho đa thức \(M\left( x \right) = 3{x^5} - 4{x^3} + 9x + 2\). Tìm các đa thức \(N\left( x \right)\), \(Q\left( x \right)\) sao cho \(N\left( x \right) - M\left( x \right) = - 5{x^4} - 4{x^3} + 2{x^2} + 8x\) và \(Q\left( x \right) + M\left( x \right) = 3{x^4} - 2{x^3} + 9{x^2} - 7\)

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Cho đa thức \(M\left( x \right) = 3{x^5} - 4{x^3} + 9x + 2\). Tìm các đa thức \(N\left( x \right)\), \(Q\left( x \right)\) sao cho \(N\left( x \right) - M\left( x \right) =  - 5{x^4} - 4{x^3} + 2{x^2} + 8x\) và \(Q\left( x \right) + M\left( x \right) = 3{x^4} - 2{x^3} + 9{x^2} - 7\)

Phương pháp giải - Xem chi tiết

Bước 1: Thực hiện cộng trừ các đơn thức cùng một biến để rút gọn đa thức đã cho.

Bước 2: Sắp xếp các đơn thức theo lũy thừa giảm dần của biến.

Bước 3: Thực hiện phép tính theo hàng ngang hoặc cột dọc.

Lời giải chi tiết

\(N\left( x \right) - M\left( x \right) =  - 5{x^4} - 4{x^3} + 2{x^2} + 8x \Rightarrow N\left( x \right) =  - 5{x^4} - 4{x^3} + 2{x^2} + 8x + M\left( x \right)\)

\( - 5{x^4} - 4{x^3} + 2{x^2} + 8x + 3{x^5} - 4{x^3} + 9x + 2 = 3{x^5} - 5{x^4} - 8{x^3} + 2{x^2} + 17x + 2\)

Vậy \(N\left( x \right) = 3{x^5} - 5{x^4} - 8{x^3} + 2{x^2} + 17x + 2\).

\(Q\left( x \right) + M\left( x \right) = 3{x^4} - 2{x^3} + 9{x^2} - 7 \Rightarrow Q\left( x \right) = 3{x^4} - 2{x^3} + 9{x^2} - 7 - M\left( x \right)\)

\(3{x^4} - 2{x^3} + 9{x^2} - 7 - \left( {3{x^5} - 4{x^3} + 9x + 2} \right) = 3{x^4} - 2{x^3} + 9{x^2} - 7 - 3{x^5} + 4{x^3} - 9x - 2 =  - 3{x^5} + 3{x^4} + 2{x^3} + 9{x^2} - 9x - 9\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí