Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo


Cho đường thẳng (d:frac{{x - 1}}{2} = frac{{3 - y}}{{ - 1}} = z + 1). Trong các phương trình sau, phương trình nào là phương trình tham số của (d)? A. (left{ begin{array}{l}x = 1 + 2t\y = 3 - t\z = - 1end{array} right.). B. (left{ begin{array}{l}x = 1 + 2t\y = - 3 + t\z = - 1 + tend{array} right.). C. (left{ begin{array}{l}x = 1 + 2t\y = 3 + t\z = - 1 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 + 2t\y = 2 + t\z = - 2 + tend{array} ri

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1\). Trong các phương trình sau, phương trình nào là phương trình tham số của \(d\)?

A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z =  - 1\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 3 + t\\z =  - 1 + t\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z =  - 1 + t\end{array} \right.\).

D. \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 2 + t\\z =  - 2 + t\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Lời giải chi tiết

\(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1 \Leftrightarrow d:\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\)

Đường thẳng \(d\) có phương trình chính tắc là \(\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\) đi qua điểm \(M\left( {1;3; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1;1} \right)\).

Phương trình tham số của \(d\) là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z =  - 1 + t\end{array} \right.\).

Chọn C.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 7 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Đường thẳng đi qua điểm (Ileft( {1; - 1; - 1} right)) và nhận (overrightarrow u = left( { - 2;3; - 5} right)) làm vectơ chỉ phương có phương trình chính tắc là A. (frac{{x + 1}}{{ - 2}} = frac{{y - 1}}{3} = frac{{z - 1}}{{ - 5}}). B. (frac{{x - 1}}{{ - 2}} = frac{{y + 1}}{3} = frac{{z + 1}}{{ - 5}}). C. (frac{{x - 2}}{1} = frac{{y + 3}}{{ - 1}} = frac{{z - 5}}{{ - 1}}). D. (frac{{x + 2}}{1} = frac{{y - 3}}{{ - 1}} = frac{{z + 5}}{{ - 1}}).

  • Giải bài 8 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Phương trình nào dưới đây là phương trình của đường thẳng đi qua (Aleft( {2;3;0} right)) và vuông góc với mặt phẳng (left( P right):x + 3y - z + 5 = 0)? A. (left{ begin{array}{l}x = 1 + t\y = 1 + 3t\z = 1 - tend{array} right.). B. (left{ begin{array}{l}x = 1 + t\y = 3t\z = 1 - tend{array} right.). C. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 - tend{array} right.). D. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 + tend{array} right.).

  • Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Phương trình nào sau đây không phải là phương trình của một mặt cầu? A. ({x^2} + {y^2} + {z^2} + {bf{x}} - 2y + 4z - 3 = 0). B. (2{x^2} + 2{y^2} + 2{{rm{z}}^2} - {bf{x}} - y - {bf{z}} = 0). C. ({x^2} + {y^2} + {{bf{z}}^2} - 2{bf{x}} + 4y - 4z + 10 = 0). D. (2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0).

  • Giải bài 10 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Cho ({x^2} + {y^2} + {z^2} + 2{rm{x}} - 4y + 4{rm{z}} + m = 0) là phương trình của một mặt cầu ((m) là tham số). Tất cả các giá trị của (m) là: A. (m < 9). B. (m le 9). C. (m > 9). D. (m ge 9).

  • Giải bài 11 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

    Mặt cầu có phương trình nào sau đây đi qua gốc toạ độ? A. (left( {{S_1}} right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2 = 0). B. (left( {{S_2}} right):{x^2} + {y^2} + {z^2} - 4y + 6{rm{z}} - 2 = 0). C. (left( {{S_3}} right):{x^2} + {y^2} + {z^2} + 2{rm{x}} + 6{rm{z}} = 0). D. (left( {{S_4}} right):{x^2} + {y^2} + {{bf{z}}^2} + 2x - 4y + 6{rm{z}} - 2 = 0).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí