Giải bài 16 trang 64 sách bài tập toán 12 - Chân trời sáng tạo


Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hai đường thẳng (d:frac{{x + 2}}{2} = frac{y}{{ - 1}} = frac{{z + 1}}{2}) và (d':frac{{x - 2}}{3} = frac{y}{{ - 4}} = frac{{z - 1}}{{ - 5}}). a) Đường thẳng (d) đi qua điểm (Mleft( { - 2;0; - 1} right)). b) Đường thẳng (d) có vectơ chỉ phương (overrightarrow a = left( { - 4;2; - 4} right)). c) Đường thẳng (d') không đi qua điểm (Nleft( {2;0;1} right)). d) Đường thẳng (d) vuông góc với (d').

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho hai đường thẳng \(d:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{y}{{ - 4}} = \frac{{z - 1}}{{ - 5}}\).

a) Đường thẳng \(d\) đi qua điểm \(M\left( { - 2;0; - 1} \right)\).

b) Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow a  = \left( { - 4;2; - 4} \right)\).

c) Đường thẳng \(d'\) không đi qua điểm \(N\left( {2;0;1} \right)\).

d) Đường thẳng \(d\) vuông góc với \(d'\).

Phương pháp giải - Xem chi tiết

Hai đường thẳng \(d\) và \(d'\) vuông góc với nhau nếu hai vectơ chỉ phương \(\overrightarrow u \) và \(\overrightarrow {u'} \) vuông góc.

Lời giải chi tiết

Ta có: \(\frac{{ - 2 + 2}}{2} = \frac{0}{{ - 1}} = \frac{{ - 1 + 1}}{2} = 0\) nên đường thẳng \(d\) đi qua điểm \(M\left( { - 2;0; - 1} \right)\). Vậy a) đúng.

Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 1;2} \right)\).

Vì \(\overrightarrow a  = \left( { - 4;2; - 4} \right) =  - 2\overrightarrow u \) nên \(\overrightarrow a \) cũng là vectơ chỉ phương của đường thẳng \(d\). Vậy b) đúng.

Ta có: \(\frac{{2 - 2}}{3} = \frac{0}{{ - 4}} = \frac{{1 - 1}}{{ - 5}}\) nên đường thẳng \(d'\) đi qua điểm \(N\left( {2;0;1} \right)\). Vậy c) sai.

Đường thẳng \(d'\) có vectơ chỉ phương \(\overrightarrow {u'}  = \left( {3; - 4; - 5} \right)\).

Ta có: \(\overrightarrow u .\overrightarrow {u'}  = 2.3 + \left( { - 1} \right).\left( { - 4} \right) + 2.\left( { - 5} \right) = 0\) nên \(\overrightarrow u  \bot \overrightarrow {u'} \). Do đó đường thẳng \(d\) vuông góc với \(d'\). Vậy d) đúng.

a) Đ.

b) Đ.

c) S.

d) Đ.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 17 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z + 2} right)^2} = 9). a) (left( S right)) có tâm (Ileft( { - 1; - 3;2} right)). b) (left( S right)) có bán kính (R = 9). c) Điểm (Oleft( {0;0;0} right)) nằm ngoài mặt cầu (left( S right)). d) Điểm (Mleft( {1;3;1} right)) nằm trên mặt cầu (left( S right)).

  • Giải bài 1 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) và \(\left( Q \right):x - 4y + \left( {m - 1} \right)z + 1 = 0\) với \(m\) là tham số. Tìm giá trị của tham số \(m\) để mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng \(\left( Q \right)\).

  • Giải bài 2 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( \alpha \right):x - y + nz--3 = 0\) và \(\left( \beta \right):2x + my + 2z + 6 = 0\). Với giá trị nào của \(m,n\) thì \(\left( \alpha \right)\) song song với \(\left( \beta \right)\)?

  • Giải bài 3 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho điểm (Gleft( {1;2;3} right)). Viết phương trình mặt phẳng (left( P right)) đi qua (G) và cắt (Ox,Oy,Oz) lần lượt tại (A,B,C) sao cho (G) là trọng tâm của tam giác (ABC).

  • Giải bài 4 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai điểm (Mleft( {1; - 1;5} right)) và (Nleft( {0;0;1} right)). Viết phương trình mặt phẳng (left( Q right)) chứa (M,N) và song song với trục (Oy).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí