Giải bài 17 trang 64 sách bài tập toán 12 - Chân trời sáng tạo


Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z + 2} right)^2} = 9). a) (left( S right)) có tâm (Ileft( { - 1; - 3;2} right)). b) (left( S right)) có bán kính (R = 9). c) Điểm (Oleft( {0;0;0} right)) nằm ngoài mặt cầu (left( S right)). d) Điểm (Mleft( {1;3;1} right)) nằm trên mặt cầu (left( S right)).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\).

a) \(\left( S \right)\) có tâm \(I\left( { - 1; - 3;2} \right)\).

b) \(\left( S \right)\) có bán kính \(R = 9\).

c) Điểm \(O\left( {0;0;0} \right)\) nằm ngoài mặt cầu \(\left( S \right)\).

d) Điểm \(M\left( {1;3;1} \right)\) nằm trên mặt cầu \(\left( S \right)\).

Phương pháp giải - Xem chi tiết

‒ Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

‒ Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).

+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.

+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.

+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.

Lời giải chi tiết

Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\) có tâm \(I\left( {1;3; - 2} \right)\) bán kính \(R = \sqrt 9  = 3\). Vậy a) sai, b) sai.

Ta có \(OI = \sqrt {{1^2} + {3^2} + {{\left( { - 2} \right)}^2}}  = \sqrt {14}  > R\) nên điểm \(O\left( {0;0;0} \right)\) nằm ngoài mặt cầu \(\left( S \right)\). Vậy c) đúng.

\(MI = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {3 - 3} \right)}^2} + {{\left( { - 2 - 1} \right)}^2}}  = 3 = R\) nên điểm \(M\left( {1;3;1} \right)\) nằm trên mặt cầu \(\left( S \right)\). Vậy d) đúng.

a) S.

b) S.

c) Đ.

d) Đ.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 1 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) và \(\left( Q \right):x - 4y + \left( {m - 1} \right)z + 1 = 0\) với \(m\) là tham số. Tìm giá trị của tham số \(m\) để mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng \(\left( Q \right)\).

  • Giải bài 2 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( \alpha \right):x - y + nz--3 = 0\) và \(\left( \beta \right):2x + my + 2z + 6 = 0\). Với giá trị nào của \(m,n\) thì \(\left( \alpha \right)\) song song với \(\left( \beta \right)\)?

  • Giải bài 3 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho điểm (Gleft( {1;2;3} right)). Viết phương trình mặt phẳng (left( P right)) đi qua (G) và cắt (Ox,Oy,Oz) lần lượt tại (A,B,C) sao cho (G) là trọng tâm của tam giác (ABC).

  • Giải bài 4 trang 64 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hai điểm (Mleft( {1; - 1;5} right)) và (Nleft( {0;0;1} right)). Viết phương trình mặt phẳng (left( Q right)) chứa (M,N) và song song với trục (Oy).

  • Giải bài 5 trang 65 sách bài tập toán 12 - Chân trời sáng tạo

    Trong không gian (Oxyz) (đơn vị trên các trục toạ độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm (Mleft( {5;0;35} right)). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình (z - 5 = 0).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí