Giải bài 35 trang 21 sách bài tập toán 12 - Cánh diều>
Nếu (intlimits_1^2 {fleft( x right)dx} = - 2) và (intlimits_2^3 {fleft( x right)dx} = 1) thì (intlimits_1^3 {fleft( x right)dx} ) bằng: A. ‒3. B. ‒1. C. 1. D. 3.
Đề bài
Nếu \(\int\limits_1^2 {f\left( x \right)dx} = - 2\) và \(\int\limits_2^3 {f\left( x \right)dx} = 1\) thì \(\int\limits_1^3 {f\left( x \right)dx} \) bằng:
A. ‒3.
B. ‒1.
C. 1.
D. 3.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tích phân: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) (với \(c \in \left[ {a;b} \right]\)).
Lời giải chi tiết
\(\int\limits_1^3 {f\left( x \right)dx} = \int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} = - 2 + 1 = - 1\).
Chọn B.
- Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều
- Giải bài 37 trang 21 sách bài tập toán 12 - Cánh diều
- Giải bài 38 trang 21 sách bài tập toán 12 - Cánh diều
- Giải bài 39 trang 21 sách bài tập toán 12 - Cánh diều
- Giải bài 40 trang 22 sách bài tập toán 12 - Cánh diều
>> Xem thêm