Giải bài 2 trang 12 vở thực hành Toán 9 tập 2


Giải các phương trình sau: a) (2{x^2} + frac{1}{3}x = 0); b) ({left( {3x + 2} right)^2} = 5).

Đề bài

Giải các phương trình sau:

a) \(2{x^2} + \frac{1}{3}x = 0\);

b) \({\left( {3x + 2} \right)^2} = 5\).

Phương pháp giải - Xem chi tiết

a) Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \(A.B = 0\).

+ Bước 2: Nếu \(A.B = 0\) thì \(A = 0\) hoặc \(B = 0\). Giải các phương trình đó và kết luận.

b) Các bước giải phương trình:

+ Bước 1: Đưa phương trình về dạng: \({A^2} = B\left( {B \ge 0} \right)\).

+ Bước 2: Nếu \({A^2} = B\left( {B \ge 0} \right)\) thì \(A = \sqrt B \) hoặc \(A =  - \sqrt B \). Giải các phương trình đó và kết luận.

Lời giải chi tiết

a) \(2{x^2} + \frac{1}{3}x = 0\)

\(x\left( {2x + \frac{1}{3}} \right) = 0\)

\(x = 0\) hoặc \(x =  - \frac{1}{6}\)

Vậy phương trình có hai nghiệm: \({x_1} = 0\); \({x_2} =  - \frac{1}{6}\).

b) \({\left( {3x + 2} \right)^2} = 5\)

\(3x + 2 = \sqrt 5 \) hoặc \(3x + 2 =  - \sqrt 5 \)

\(x = \frac{{\sqrt 5  - 2}}{3}\) hoặc \(x = \frac{{ - \sqrt 5  - 2}}{3}\)

Vậy phương trình có hai nghiệm: \({x_1} = \frac{{\sqrt 5  - 2}}{3}\); \({x_2} = \frac{{ - \sqrt 5  - 2}}{3}\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 3 trang 13 vở thực hành Toán 9 tập 2

    Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức (Delta ) và xác định số nghiệm của mỗi phương trình sau: a) (11{x^2} + 13x - 1 = 0); b) (9{x^2} + 42x + 49 = 0); c) ({x^2} - 2x + 3 = 0).

  • Giải bài 4 trang 13 vở thực hành Toán 9 tập 2

    Dùng công thức nghiệm của phương trình bậc hai, giải các phương trình sau: a) ({x^2} - 2sqrt 5 x + 2 = 0); b) (4{x^2} + 28x + 49 = 0); c) (3{x^2} - 3sqrt 2 x + 1 = 0).

  • Giải bài 5 trang 13 vở thực hành Toán 9 tập 2

    Dùng công thức nghiệm thu gọn của phương trình bậc hai, giải các phương trình sau: a) ({x^2} + 2sqrt 5 x + 4 = 0); b) (2{x^2} - 28x + 98 = 0); c) (2{x^2} - 4sqrt 5 x + 9 = 0).

  • Giải bài 6 trang 14 vở thực hành Toán 9 tập 2

    Sử dụng máy tính cầm tay, tìm nghiệm của các phương trình sau: a) (0,1{x^2} + 2,5x - 0,2 = 0); b) (0,01{x^2} - 0,05x + 0,0625 = 0); c) (1,2{x^2} + 0,75x + 2,5 = 0).

  • Giải bài 7 trang 14 vở thực hành Toán 9 tập 2

    Tìm các giá trị của m để phương trình (3{x^2} + 2left( {m - 2} right)x + 1 = 0) có nghiệm kép.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí