Giải Bài 2 trang 103 sách bài tập toán 7 tập 1 - Cánh diều>
Cho các cặp tia Oa và Ob, Oc và Od là các cặp tia đối nhau. Tìm số đo mỗi góc aOc, bOc, bOd, aOd trong mỗi trường hợp sau:
Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho các cặp tia Oa và Ob, Oc và Od là các cặp tia đối nhau. Tìm số đo mỗi góc aOc, bOc, bOd, aOd trong mỗi trường hợp sau:
a) \(\widehat {aOc} = 75^\circ \); b) \(\widehat {aOc} + \widehat {bOd} = 140^\circ \);
c) \(\widehat {aOc} + \widehat {bOd} = \widehat {bOc} + \widehat {aOd}\); d) \(\widehat {bOc} - \widehat {aOc} = 10^\circ \);
e) \(\widehat {bOc} = 2\widehat {aOc}\).
Phương pháp giải - Xem chi tiết
Ta tìm số đo mỗi góc dựa vào những góc đã biết: Hai góc đối đỉnh có số đo góc bằng nhau, hai góc kề bù có tổng số đo góc bằng 180°.
Lời giải chi tiết
a) \(\widehat {aOc} = \widehat {bOd} = 75^\circ \) (đối đỉnh); \(\widehat {bOc} = \widehat {aOd} = 180^\circ - 75^\circ = 105^\circ \) (hai góc aOc và bOd bù nhau).
b) \(\widehat {aOc} + \widehat {bOd} = 140^\circ \to \widehat {aOc} = \widehat {bOd} = 140^\circ :2 = 70^\circ \); \(\widehat {bOc} = \widehat {aOd} = 180^\circ - 70^\circ = 110^\circ \).
c)
\(\begin{array}{l}\widehat {aOc} + \widehat {bOd} = \widehat {bOc} + \widehat {aOd} \to 2\widehat {aOc} = 2\widehat {bOc}\\ \to \widehat {aOc} = \widehat {bOd} = 180^\circ :2^\circ = 90^\circ \\ \to \widehat {aOc} = \widehat {bOd} = \widehat {bOc} = \widehat {aOd} = 90\end{array}\);
d)
\(\begin{array}{l}\left\{ \begin{array}{l}\widehat {bOc} + \widehat {aOc} = 180^\circ \\\widehat {bOc} - \widehat {aOc} = 10^\circ \end{array} \right.\\ \to \left\{ \begin{array}{l}\widehat {bOc} = \widehat {aOd} = 95^\circ \\\widehat {aOc} = \widehat {bOd} = 85^\circ \end{array} \right.\end{array}\);
e)
\(\begin{array}{l}\left\{ \begin{array}{l}\widehat {bOc} + \widehat {aOc} = 180^\circ \\\widehat {bOc} = 2\widehat {aOc}\end{array} \right.\\ \to 3\widehat {aOc} = 180^\circ \to \widehat {aOc} = \widehat {bOd} = 60^\circ \\ \to \widehat {bOc} = \widehat {aOd} = 120^\circ \end{array}\).
- Giải Bài 3 trang 104 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 4 trang 104 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 5 trang 104 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 6 trang 104 sách bài tập toán 7 tập 1 - Cánh diều
- Giải Bài 7 trang 104 sách bài tập toán 7 tập 1 - Cánh diều
>> Xem thêm