Đề số 10 - Đề kiểm tra học kì 1 - Toán 7

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 10 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 7

Đề bài

Bài 1 (1,5 điểm):Thực hiện phép tính:

\(a)\,\,\dfrac{3}{2} - \dfrac{3}{2}:\dfrac{{ - 1}}{{{2^3}}}\\b)\,\,23\dfrac{1}{3}:\dfrac{{ - 1}}{{{2^2}}} - 13\dfrac{1}{3}:\dfrac{{ - 1}}{{{2^2}}} + 5\sqrt {\dfrac{9}{{25}}} \)

Bài 2 (1,5 điểm):Cho hàm số \(y = 3x\)

a) Vẽ đồ thị hàm số trên.

b) Điểm \(M( - 2; - 6)\) có thuộc đồ thị hàm số \(y = 3x\) không? Vì sao?

Bài 3 (2,5 điểm):Tìm \(x,\,\,y\) biết:

a) \(\dfrac{1}{3} + \dfrac{2}{3}:x =  - 2\)

b)\(7x = 3y\) và \(2x - y = 16\)

c) Một nhân viên văn phòng có thể đánh máy được \(160\) từ trong \(2,5\) phút. Hỏi cần bao nhiêu phút để người đó đánh được \(800\) từ? (giả thiết rằng thời gian để đánh được các từ là như nhau).

Bài 4 (3,5 điểm):Cho tam giác \(ABC\) vuông tại \(A\) có \(\angle B = {60^0}\). Vẽ \(AH \bot BC\) tại \(H\).

a) Tính số đo \(\angle HAB\).

b) Trên cạnh \(AC\) lấy điểm \(D\) sao cho \(AD = AH\). Gọi\(I\) là trung điểm của cạnh \(HD\). Chứng minh \(\Delta AHI = \Delta ADI\). Từ đó suy ra \(AI \bot HD\).

c) Tia \(AI\) cắt cạnh \(HC\) tại điểm \(K\). Chứng minh \(\Delta AHK = \Delta ADK\), từ đó suy ra \(AB\)//\(KD\).

d) Trên tia đối của tia \(HA\) lấy điểm \(E\) sao cho \(HE = AH\). Chứng minh \(H\) là trung điểm của \(BK\) và ba điểm \(D,\,\,K,\,\,E\) thẳng hàng.

Bài 5 (1,0 điểm):

a) Tính: \(\dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} + ... + \dfrac{1}{{19.21}}\)

b) Chứng minh: \(A = \dfrac{1}{{1.3}} + \dfrac{1}{{3.5}} + \dfrac{1}{{5.7}} \)\(+ ... + \dfrac{1}{{(2n - 1)(2n + 1)}} < \dfrac{1}{2}\).

Lời giải chi tiết

Bài 1:

a) \(\dfrac{27}{2}\)

b)  - 37

Bài 2:

a) Vẽ hệ trục tọa độ \(Oxy\).

 

b) Điểm \(M{\kern 1pt} \,( - 2;\, - 6)\) thuộc đồ thị hàm số \(y = 3x\).

Bài 3:

a) \(x = \dfrac{{ - 2}}{7}\).

b) \(x =  - 48\) và \(y =  - 112\).

c) Cần \(12,5\) phút để người đó đánh được \(800\) từ.

Bài 5:

a) \(\dfrac{10}{21}\)

b) Ta có:

A = \(\dfrac{1}{2} \cdot \left( {1 - \dfrac{1}{{2n + 1}}} \right)\)

Hay \(A < \dfrac{1}{2}\) (đpcm).

Xem thêm: Lời giải chi tiết Đề kiểm tra học kì 1 (Đề thi học kì 1) môn Toán 7 tại Tuyensinh247.com

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

Các bài liên quan: - ĐỀ KIỂM TRA HỌC KÌ 1 (ĐỀ THI HỌC KÌ 1) - TOÁN 7

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.