Đề thi học kì 1 Toán 8 - Đề số 5 - Chân trời sáng tạo

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Phần trắc nghiệm (3 điểm) Câu 1: Giá trị của đa thức x2 - y2 - 2y - 1 tại x = 73 và y = 26 là:

Đề bài

I. Trắc nghiệm
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1 :

Giá trị của đa thức x2 - y2 - 2y - 1 tại x = 73 và y = 26 là:

  • A.
    4698.
  • B.
    6400.
  • C.
    4649.   
  • D.
    4600.
Câu 2 :

Tính giá trị của biểu thức:  302 + 452 - 252 + 60.45 được kết quả là 

  • A.
    50000.
  • B.
    10000.
  • C.
    9000.
  • D.
    5000.
Câu 3 :

Giá trị của biểu thức \(\frac{{{x^2} + 4x + 4}}{{{x^2} + 2x}}\) khi x = -2 là:  

  • A.
    0.
  • B.
    -1.
  • C.
    4.
  • D.
    Không xác định.
Câu 4 :

Hiệu của biểu thức \(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\) bằng:

  • A.
    \(\frac{5}{{x - 1}}\).
  • B.
    \(\frac{{5\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).
  • C.
    \(\frac{{ - 3}}{{x - 1}}\).
  • D.
    \(\frac{5}{2}\).
Câu 5 :

Cho \(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{P}{{{x^2} - {y^2}}}\). Đa thức P là: 

  • A.
    \({x^3} - {y^3}\).
  • B.
    \({\left( {x - y} \right)^3}\).
  • C.
    \({\left( {x + y} \right)^3}\).
  • D.
    \({x^3} + {y^3}\).
Câu 6 :

Cho ABCD là hình bình hành với các điều kiện như trên hình vẽ.

Trên hình này có:

  • A.
    Ba hình bình hành.
  • B.
    Bốn hình bình hành.
  • C.
    Năm hình bình hành.     
  • D.
    Sáu hình bình hành.
Câu 7 :

Tứ giác là hình chữ nhật nếu:

  • A.
    Là tứ giác có hai đường chéo bằng nhau.          
  • B.
    Là hình thang có hai góc vuông.
  • C.
    Là hình thang có một góc vuông.              
  • D.
    Là hình bình hành có một góc vuông.
Câu 8 :

Một hình chóp tứ giác đều có độ dài cạnh bên bằng 25cm, đáy là hình vuông ABCD cạnh 30cm. Tính diện tích xung quanh của hình chóp.

  • A.
    600 cm2.
  • B.
    1200 cm2.
  • C.
    1500 cm2.
  • D.
    1800 cm2.
Câu 9 :

Cho hình chóp tam giác đều S.ABC có thể tích là 100 cm3; chiều cao của hình chóp là 3cm. Độ dài cạnh đáy của hình chóp đó là (Làm tròn đến hàng đơn vị)

  • A.
    13.
  • B.
    14.
  • C.
    15.
  • D.
    16.
Câu 10 :

Độ dài một cạnh góc vuông và cạnh huyền của một tam giác vuông lần lượt là 3cm và 5cm. Diện tích của tam giác vuông đó là:

  • A.
    12cm2.
  • B.
    14cm2 .
  • C.
    6cm2.
  • D.
    7cm2.
Câu 11 :

Hình bình hành ABCD là hình chữ nhật khi:

  • A.
    AB = BC.
  • B.
    AC = BD.
  • C.
    BC = CD.
  • D.
    A, B, C đều đúng.
Câu 12 :

Thống kê số lượng học sinh từng lớp ở khối 8 của một trường THCS dự thi hết học kì I môn Toán. Số liệu trong bảng bên không hợp lí là:

  • A.
    Số học sinh dự thi lớp 8A
  • B.
    Số học sinh dự thi lớp 8B
  • C.
    Số học sinh dự thi lớp 8C
  • D.
    Số học sinh dự thi lớp 8D

Biểu đồ đoạn thẳng biểu diễn sô lượt người nước ngoài đến Việt Nam qua các năm 2018; 2019; 2020; 2021. (đơn vị: nghìn lượt người)

(Nguồn: Niên giám thống kê 2021)

Câu 13

Lựa chọn biểu đồ nào để biểu diễn các dữ liệu thống kê có trong biểu đồ đoạn thẳng ở hình bên ?

  • A.
    Biểu đồ hình quạt tròn.   
  • B.
    Biểu đồ cột kép.
  • C.
    Biểu đồ cột.                     
  • D.
    A; B; C đều đúng.
Câu 14

Số lượt người nước ngoài đến Việt Nam năm 2019 là bao nhiêu nghìn lượt người ?

  • A.
    15497,8.
  • B.
    18008,6.
  • C.
    3837,3.
  • D.
    157,3.
Câu 15

So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười) ?

  • A.
    16,2%.
  • B.
    18,2%.
  • C.
    37,3%.
  • D.
    17,3%.
II. Tự luận

Lời giải và đáp án

I. Trắc nghiệm
Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1 :

Giá trị của đa thức x2 - y2 - 2y - 1 tại x = 73 và y = 26 là:

  • A.
    4698.
  • B.
    6400.
  • C.
    4649.   
  • D.
    4600.

Đáp án : D

Phương pháp giải :

- Rút gọn đa thức.

- Thay x = 73 và y = 26 vào đa thức để tính giá trị.

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}{x^2} - {y^2} - 2y - 1\\ = {x^2} - \left( {{y^2} + 2y + 1} \right)\\ = {x^2} - {\left( {y + 1} \right)^2}\\ = \left( {x - y - 1} \right)\left( {x + y + 1} \right)\end{array}\)

Thay x = 73 và y = 26, ta được:

\(\left( {73 - 26 - 1} \right)\left( {73 + 26 + 1} \right) = 46.100 = 4600\).

Câu 2 :

Tính giá trị của biểu thức:  302 + 452 - 252 + 60.45 được kết quả là 

  • A.
    50000.
  • B.
    10000.
  • C.
    9000.
  • D.
    5000.

Đáp án : D

Phương pháp giải :

Sử dụng hằng đẳng thức để tính nhanh biểu thức.

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}{30^2} + {45^2} - {25^2} + 60.45\\ = {30^2} + {45^2} - {25^2} + 2.30.45\\ = \left( {{{30}^2} + 2.30.45 + {{45}^2}} \right) - {25^2}\\ = {\left( {30 + 45} \right)^2} - {25^2}\\ = {75^2} - {25^2}\\ = \left( {75 - 25} \right)\left( {75 + 25} \right)\\ = 50.100 = 5000\end{array}\)

Câu 3 :

Giá trị của biểu thức \(\frac{{{x^2} + 4x + 4}}{{{x^2} + 2x}}\) khi x = -2 là:  

  • A.
    0.
  • B.
    -1.
  • C.
    4.
  • D.
    Không xác định.

Đáp án : D

Phương pháp giải :

Kiểm tra điều kiện xác định của biểu thức. Thay x = -2 vào biểu thức.

Lời giải chi tiết :

Điều kiện xác định của biểu thức là: \({x^2} + 2x \ne 0 \Leftrightarrow x\left( {x + 2} \right) \ne 0 \Leftrightarrow \left[ \begin{array}{l}x \ne 0\\x \ne  - 2\end{array} \right.\)

Vì x = -2 không thỏa mãn điều kiện xác định nên biểu thức không xác định.

Câu 4 :

Hiệu của biểu thức \(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\) bằng:

  • A.
    \(\frac{5}{{x - 1}}\).
  • B.
    \(\frac{{5\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}\).
  • C.
    \(\frac{{ - 3}}{{x - 1}}\).
  • D.
    \(\frac{5}{2}\).

Đáp án : A

Phương pháp giải :

Sử dụng quy tắc tính với phân thức đại số.

Lời giải chi tiết :

Ta có:

\(\frac{{{\rm{x\;}} + {\rm{\;}}1{\rm{\;}}}}{{{\rm{x\;}} - {\rm{\;}}1{\rm{\;}}}}\) \(-\) \(\frac{{{\rm{x\;}}-\;4}}{{{\rm{x\;}}-{\rm{\;}}1}}\)\( = \frac{{x + 1 - \left( {x - 4} \right)}}{{x - 1}} = \frac{5}{{x - 1}}\).

Câu 5 :

Cho \(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{P}{{{x^2} - {y^2}}}\). Đa thức P là: 

  • A.
    \({x^3} - {y^3}\).
  • B.
    \({\left( {x - y} \right)^3}\).
  • C.
    \({\left( {x + y} \right)^3}\).
  • D.
    \({x^3} + {y^3}\).

Đáp án : C

Phương pháp giải :

Sử dụng quy tắc tính với phân thức đại số.

Lời giải chi tiết :

Ta có:

\(\frac{{{{\left( {x + y} \right)}^2}}}{{x - y}} = \frac{{{{\left( {x + y} \right)}^2}\left( {x + y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{{\left( {x + y} \right)}^3}}}{{{x^2} - {y^2}}} = \frac{P}{{{x^2} - {y^2}}} \Rightarrow P = {\left( {x + y} \right)^3}\).

Câu 6 :

Cho ABCD là hình bình hành với các điều kiện như trên hình vẽ.

Trên hình này có:

  • A.
    Ba hình bình hành.
  • B.
    Bốn hình bình hành.
  • C.
    Năm hình bình hành.     
  • D.
    Sáu hình bình hành.

Đáp án : D

Phương pháp giải :

Sử dụng kiến thức về hình bình hành.

Lời giải chi tiết :

Các hình bình hành trong hình là: ABCD; AFHD; AFCH; FBCH; FBHD; EFGH. Vậy có 6 hình bình hành.

Câu 7 :

Tứ giác là hình chữ nhật nếu:

  • A.
    Là tứ giác có hai đường chéo bằng nhau.          
  • B.
    Là hình thang có hai góc vuông.
  • C.
    Là hình thang có một góc vuông.              
  • D.
    Là hình bình hành có một góc vuông.

Đáp án : D

Phương pháp giải :

Dựa vào kiến thức về hình chữ nhật.

Lời giải chi tiết :

Tứ giác có hai đường chéo bằng nhau có thể là hình thang cân nên A sai.

Hình thang có một góc vuông, hai góc vuông là hình thang vuông nên B, C sai.

Hình bình hành có một góc vuông là hình chữ nhật nên D đúng.

Câu 8 :

Một hình chóp tứ giác đều có độ dài cạnh bên bằng 25cm, đáy là hình vuông ABCD cạnh 30cm. Tính diện tích xung quanh của hình chóp.

  • A.
    600 cm2.
  • B.
    1200 cm2.
  • C.
    1500 cm2.
  • D.
    1800 cm2.

Đáp án : B

Phương pháp giải :

Dựa vào công thức tính diện tích xung quanh của hình chóp tứ giác đều.

Lời giải chi tiết :

Độ dài trung đoạn là: \(\sqrt {{{25}^2} - {{\left( {\frac{{30}}{2}} \right)}^2}}  = 20(cm)\)

Diện tích xung quanh của hình chóp tứ giác đều đó là:

\({S_{xq}} = \frac{{30.4}}{2}.20 = 1200\left( {c{m^2}} \right)\).

Câu 9 :

Cho hình chóp tam giác đều S.ABC có thể tích là 100 cm3; chiều cao của hình chóp là 3cm. Độ dài cạnh đáy của hình chóp đó là (Làm tròn đến hàng đơn vị)

  • A.
    13.
  • B.
    14.
  • C.
    15.
  • D.
    16.

Đáp án : C

Phương pháp giải :

Dựa vào công thức tính thể tích hình chóp tam giác.

Lời giải chi tiết :

Ta có thể tích hình chóp tam giác đều là: \(V = \frac{1}{3}S.h \Rightarrow S = \frac{{3V}}{h}\)

Diện tích đáy hình chóp tam giác đều là:

\(S = \frac{{3.100}}{3} = 100\left( {c{m^2}} \right)\)

Công thức tính diện tích tam giác đều là:

\(\begin{array}{l}S = \frac{{{a^2}\sqrt 3 }}{4} = 100 \Rightarrow {a^2} = 100:\frac{{\sqrt 3 }}{4} \approx 231\\ \Rightarrow a \approx 15\left( {cm} \right)\end{array}\)

Câu 10 :

Độ dài một cạnh góc vuông và cạnh huyền của một tam giác vuông lần lượt là 3cm và 5cm. Diện tích của tam giác vuông đó là:

  • A.
    12cm2.
  • B.
    14cm2 .
  • C.
    6cm2.
  • D.
    7cm2.

Đáp án : C

Phương pháp giải :

Sử dụng định lí Pythagore để tính cạnh góc vuông còn lại.

Sử dụng công thức diện tích tam giác.

Lời giải chi tiết :

Độ dài cạnh góc vuông còn lại là: \(\sqrt {{5^2} - {3^2}}  = 4\) (cm)

Diện tích của tam giác vuông đó là: \(\frac{1}{2}.3.4 = 6\left( {c{m^2}} \right)\)

Câu 11 :

Hình bình hành ABCD là hình chữ nhật khi:

  • A.
    AB = BC.
  • B.
    AC = BD.
  • C.
    BC = CD.
  • D.
    A, B, C đều đúng.

Đáp án : B

Phương pháp giải :

Sử dụng dấu hiệu nhận biết hình chữ nhật.

Lời giải chi tiết :

Hình bình hành là hình chữ nhật nếu có hai đường chéo bằng nhau hay AC = BD.

Câu 12 :

Thống kê số lượng học sinh từng lớp ở khối 8 của một trường THCS dự thi hết học kì I môn Toán. Số liệu trong bảng bên không hợp lí là:

  • A.
    Số học sinh dự thi lớp 8A
  • B.
    Số học sinh dự thi lớp 8B
  • C.
    Số học sinh dự thi lớp 8C
  • D.
    Số học sinh dự thi lớp 8D

Đáp án : D

Phương pháp giải :

Quan sát bảng thống kê để chỉ ra dữ liệu chưa hợp lý

Lời giải chi tiết :

Quan sát bảng thống kê, ta thấy lớp 8D có sĩ số 44 học sinh nhưng số học sinh dự thi là 50 > 44 không hợp lí.

Biểu đồ đoạn thẳng biểu diễn sô lượt người nước ngoài đến Việt Nam qua các năm 2018; 2019; 2020; 2021. (đơn vị: nghìn lượt người)

(Nguồn: Niên giám thống kê 2021)

Câu 13

Lựa chọn biểu đồ nào để biểu diễn các dữ liệu thống kê có trong biểu đồ đoạn thẳng ở hình bên ?

  • A.
    Biểu đồ hình quạt tròn.   
  • B.
    Biểu đồ cột kép.
  • C.
    Biểu đồ cột.                     
  • D.
    A; B; C đều đúng.

Đáp án: C

Phương pháp giải :

Quan sát biểu đồ để trả lời câu hỏi.

Lời giải chi tiết :

Dữ liệu trên còn có thể biểu diễn bằng biểu đồ cột.

Câu 14

Số lượt người nước ngoài đến Việt Nam năm 2019 là bao nhiêu nghìn lượt người ?

  • A.
    15497,8.
  • B.
    18008,6.
  • C.
    3837,3.
  • D.
    157,3.

Đáp án: B

Phương pháp giải :

Quan sát biểu đồ để trả lời câu hỏi.

Lời giải chi tiết :

Số lượt người nước ngoài đến Việt Nam năm 2019 là 18008,6 nghìn lượt người.

Câu 15

So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười) ?

  • A.
    16,2%.
  • B.
    18,2%.
  • C.
    37,3%.
  • D.
    17,3%.

Đáp án: A

Phương pháp giải :

Quan sát biểu đồ để trả lời câu hỏi.

Lời giải chi tiết :

Số lượt người nước ngoài đến Việt Nam năm 2018 là 15497,8 nghìn lượt người.

Số lượt người nước ngoài đến Việt Nam năm 2019 hơn năm 2018 là: 18008,6 - 15497,8 = 2510,8 (nghìn lượt người).

So với năm 2018 số lượt người nước ngoài đến Việt Nam năm 2019 tăng: \(\frac{{2510,8}}{{15497,8}}.100\%  \approx 16,2\% \)

II. Tự luận
Phương pháp giải :

a) Điều kiện để phân thức A xác định là mẫu thức khác 0.

b) Phân tích mẫu thức thành nhân tử để rút gọn.

c) Để phân thức A nguyên thì tử thức phải chia hết cho mẫu thức.

Lời giải chi tiết :

a) Phân thức A xác định khi và chỉ khi \(1 - 4{x^2} \ne 0 \Leftrightarrow \left( {1 - 2x} \right)\left( {1 + 2x} \right) \ne 0 \Leftrightarrow \left[ \begin{array}{l}1 - 2x \ne 0\\1 + 2x \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ne \frac{1}{2}\\x \ne - \frac{1}{2}\end{array} \right.\)

b) Ta có:

\(A = \frac{{1 - 2x}}{{1 - 4{x^2}}} = \frac{{\left( {1 - 2x} \right)}}{{\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = \frac{1}{{1 + 2x}}\)

c) Phân thức A có giá trị nguyên khi và chỉ khi \(\frac{1}{{1 + 2x}}\) nguyên, hay \(\left( {1 + 2x} \right) \in U\left( 1 \right) = \left\{ { \pm 1} \right\}\).

Ta có bảng giá trị sau:

1 + 2x

-1

1

x

-1 (TM)

0 (TM)

\(A = \frac{1}{{1 + 2x}}\)

-1

1

Vậy \(x \in \left\{ { - 1;0} \right\}\) thì phân thức A có giá trị nguyên.

Phương pháp giải :

a) Nhóm nhân tử chung để tìm x.

b) Biến đổi bằng hằng đẳng thức \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\).

Lời giải chi tiết :

a) \({x^2} + 3x = 0\)

\(\begin{array}{l}x(x + 3) = 0\\\left[ \begin{array}{l}x = 0\\x + 3 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x =  - 3\end{array} \right.\end{array}\)

Vậy x = 0 hoặc x = -3.

b) Ta có: \({x^2} - 4x + 7 = {x^2} - 4x + 4 + 3 = {\left( {x - 2} \right)^2} + 3\)

Vì \({\left( {x - 2} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\) nên \({\left( {x - 2} \right)^2} + 3 \ge 3\) với mọi \(x \in \mathbb{R}\).

Dấu “=” xảy ra là giá trị nhỏ nhất của biểu thức x2 \(-\) 4x + 7.

Vậy giá trị nhỏ nhất của x2 \(-\) 4x + 7 bằng 3 khi x – 2 = 0 hay x = 2.

Phương pháp giải :

1. Sử dụng định lí Pythagore để tính độ dài trung đoạn.

Sử dụng công thức tính diện tích xung quanh hình chóp tứ giác đều để tính diện tích vải bạc cần dùng để phủ mái chòi.

2. 

a) Chứng mình ADME có 3 góc vuông nên là hình chữ nhật.

b) Chứng minh \(MD\parallel EC\), \(MD = EC = \frac{1}{2}AC\) \( \Rightarrow \) đpcm.

c) \(ME = DH = AD = \frac{1}{2}AB\); \(HM\parallel DE\) nên \(DHME\) là hình thang cân.

Lời giải chi tiết :

1. 

Ta có hình vẽ minh họa cho mái nhà của chòi như hình trên.

Gọi SH là đường cao của tam giác SAB nên SH là trung đoạn của hình chóp S.ABCD.

Vì S.ABCD là hình chóp tứ giác đều nên SAB là tam giác cân. Do đó SA = SB = 1,2m. Khi đó SH là đường cao đồng thời là đường trung tuyến nên AH = BH = \(\frac{1}{2}\) AB = \(\frac{1}{2}\).1,5 = 0,75(m).

Áp dụng định lí Pythagore vào tam giác vuông SHB, ta có:

\(SH = \sqrt {S{B^2} - B{H^2}}  = \sqrt {1,{2^2} - 0,{{75}^2}}  \approx 1\left( m \right)\)

Diện tích vải bạc cần dùng để phủ mái chòi chính là diện tích xung quanh của hình chóp tứ giác đó.

Diện tích xung quanh của hình chóp là:

\({S_{xq}} = \frac{{4.1,5}}{2}.1 = 3\left( {{m^2}} \right)\).

Vậy diện tích vải bạc cần dùng để phủ mái chòi là 3m2.

2. 

a) Xét tứ giác ADME có:

\(\widehat A = {90^0}\) (tam giác ABC vuông tại A)

\(\widehat D = \widehat E = {90^0}\) (\(MD\) vuông góc với \(AB\) tại \(D\), \(ME\) vuông góc với \(AC\) tại \(E\))

=> ADME là hình chữ nhật (tứ giác có 3 góc vuông).

b) Xét tam giác ABC vuông tại A có M là trung điểm của BC nên AM là đường trung tuyến ứng với cạnh huyền của tam giác ABC nên AM = MC = \(\frac{1}{2}\)

Khi đó tam giác AMC cân tại M. Mà ME vuông góc với AC nên ME là đường cao đồng thời là đường trung tuyến của tam giác AMC suy ra E là trung điểm của AC \( \Rightarrow \) AE = EC. (1)

ADME là hình chữ nhật nên DM // AE và DM = AE (2)

Từ (1) và (2) suy ra DM // EC và DM = EC, do đó tứ giác DMCE là hình bình hành.

c) DMCE là hình bình hành nên DE // MC => DE // HM (H thuộc đường thẳng CM)

=> DHME là hình thang.

Xét tam giác AMB có AM = BM nên tam giác AMB cân tại M. Mà MD vuông góc với AB nên MD đường cao đồng thời là đường trung tuyến của tam giác ABM suy ra D là trung điểm của AB.

Xét tam giác ABH vuông tại H, D là trung điểm của AB nên HD là đường trung tuyến ứng với cạnh huyền của tam giác AHB => \(HD = AD = \frac{1}{2}AB\).

Mà ADME là hình chữ nhật nên AD = ME suy ra HD = ME.

Hình thang DHME có HD = ME nên DHME là hình thang cân.

Phương pháp giải :

Biến đổi biểu thức bằng cách sử dụng hằng đẳng thức.

Lời giải chi tiết :

Ta có: \(A = {({n^2} + 10)^2} - 36{n^2} = ({n^2} + 10 - 6n)({n^2} + 10 + 6n)\)

Để A là số nguyên tố thì A chỉ có 2 ước là 1 và chính nó.

\(A = ({n^2} + 10 - 6n)({n^2} + 10 + 6n)\) có ước là 1 và chính nó khi và chỉ khi \({n^2} + 10 - 6n = 1\) hoặc \({n^2} + 10 + 6n = 1\).

Trường hợp 1. Với \({n^2} + 10 - 6n = 1\), ta có:

\(\begin{array}{l}{n^2} + 10 - 6n = 1\\{n^2} - 6n + 9 = 0\\{\left( {n - 3} \right)^2} = 0\\n = 3\,(tm)\end{array}\)

Khi đó \(A = 1.\left( {{3^2} + 10 + 6.3} \right) = 37\)

Trường hợp 2. Với \({n^2} + 10 + 6n = 1\), ta có:

\(\begin{array}{l}{n^2} + 10 + 6n = 1\\{n^2} + 6n + 9 = 0\\{\left( {n + 3} \right)^2} = 0\end{array}\)

\(n =  - 3\) (không thỏa mãn vì \(n \in \mathbb{N}\)).

Vậy n = 3 thì biểu thức \(A = {({n^2} + 10)^2} - 36{n^2}\) có giá trị là một số nguyên tố.

 

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.