a) Tìm x, biết: x2 + 3x = 0
b) Tìm giá trị nhỏ nhất của biểu thức: x2 \(-\) 4x + 7
a) Nhóm nhân tử chung để tìm x.
b) Biến đổi bằng hằng đẳng thức \({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\).
a) \({x^2} + 3x = 0\)
\(\begin{array}{l}x(x + 3) = 0\\\left[ \begin{array}{l}x = 0\\x + 3 = 0\end{array} \right.\\\left[ \begin{array}{l}x = 0\\x = - 3\end{array} \right.\end{array}\)
Vậy x = 0 hoặc x = -3.
b) Ta có: \({x^2} - 4x + 7 = {x^2} - 4x + 4 + 3 = {\left( {x - 2} \right)^2} + 3\)
Vì \({\left( {x - 2} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\) nên \({\left( {x - 2} \right)^2} + 3 \ge 3\) với mọi \(x \in \mathbb{R}\).
Dấu “=” xảy ra là giá trị nhỏ nhất của biểu thức x2 \(-\) 4x + 7.
Vậy giá trị nhỏ nhất của x2 \(-\) 4x + 7 bằng 3 khi x – 2 = 0 hay x = 2.