Đề kiểm tra 15 phút - Đề số 1 - Chương 4 - Đại số và Giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 1 - Chương 4 - Đại số và Giải tích 11

Đề bài

Câu 1: Chọn mệnh đề đúng trong các mệnh đề sau:

A. Nếu  \(\lim \left| {{u_n}} \right| =  + \infty \) thì \(\lim {u_n} =  + \infty \)

C. Nếu  \(\lim \left| {{u_n}} \right| =  + \infty \) thì \(\lim {u_n} =  - \infty \)

B. Nếu  \(\lim {u_n} = 0\) thì \(\lim \left| {{u_n}} \right| = 0\)

D. Nếu  \(\lim {u_n} =  - a\) thì \(\lim \left| {{u_n}} \right| = a\)

Câu 2: Giá trị của \(\lim \dfrac{{{{3.2}^n} - {3^n}}}{{{2^{n + 1}} + {3^{n + 1}}}}\)bằng

A. \( + \infty \)             B. \( - \infty \)

C. \( - \dfrac{1}{3}\)             D. 1

Câu 3: Giá trị của \(\lim \dfrac{{\sqrt {{n^2} + 1} }}{{n + 1}}\) bằng

A. \( + \infty \)               B. \( - \infty \)

C. \(0\)                    D. 1                

Câu 4: Tìm giá trị đúng của \(S = \sqrt 2 \left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ... + \dfrac{1}{{{2^n}}} + ...} \right)\)

A. \(\sqrt 2  + 1\)               B. 2

C. \(2\sqrt 2 \)                   D. \(\dfrac{1}{2}\)

Câu 5: Kết quả đúng của  \(\lim \left( {5 - \dfrac{{n\cos 2n}}{{{n^2} + 1}}} \right)\)là:

A.5                     B. 4

C. -4                   D. \(\dfrac{1}{4}\)

Câu 6: Tính giới hạn: \(\lim \dfrac{{1 + 3 + 5 + ... + (2n + 1)}}{{3{n^2} + 4}}\)

A.0                    B. \(\dfrac{1}{3}\)

C. \(\dfrac{2}{3}\)                 D. 1

Câu 7: Giá trị của \(\lim \dfrac{{\cos n + \sin n}}{{{n^2} + 1}}\) bằng

A.0                    B. \( - \infty \)

C.\( + \infty \)              D. 1        

Câu 8: Cho dãy số có giới hạn \(({u_n})\)xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = \dfrac{1}{2}}\\{{u_{n + 1}} = \dfrac{1}{{2 - {u_n}}};n \ge 1}\end{array}} \right.\). Tìm kết quả đúng của \(\lim {u_n}\).

A.0                  B. 1

C. -1                D. \(\dfrac{1}{2}\)

Câu 9: Giá trị của \(\lim \sqrt[n]{a};\,\,\,a > 0\) bằng

A. \( + \infty \)                B. \( - \infty \)

C. \(0\)                     D. 1

Câu 10: Tính giới hạn \(\lim \left[ {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{n(n + 1)}}} \right]\)

A.0               B. 1

C. \(\dfrac{3}{2}\)            D. Không có giới hạn

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

B

C

D

C

A

B

A

B

D

B

Câu 1: đáp án B

Nếu  \(\lim {u_n} = 0\) thì \(\lim \left| {{u_n}} \right| = 0\)

Câu 2: Đáp án B

\(\lim \dfrac{{{{3.2}^n} - {3^n}}}{{{2^{n + 1}} + {3^{n + 1}}}} = \lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n} - \dfrac{1}{3}}}{{{{\left( {\dfrac{2}{3}} \right)}^{n + 1}} + 1}} = \dfrac{{ - 1}}{3}\)

Câu 3: Đáp án D

\(\lim \frac{{\sqrt {{n^2} + 1} }}{{n + 1}} = \lim \frac{{\sqrt {1 + \frac{1}{{{n^2}}}} }}{{1 + \frac{1}{n}}} = 1\)

Câu 4: Đáp án C

\(S = \sqrt 2 \left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ... + \dfrac{1}{{{2^n}}} + ...} \right) = \sqrt 2 .\dfrac{1}{{1 - \dfrac{1}{2}}} = 2\sqrt 2 \)

Câu 5: Đáp án A

\(\begin{array}{l}\lim \left( {5 - \dfrac{{n\cos 2n}}{{{n^2} + 1}}} \right) = \lim 5 - \lim \dfrac{{n\cos 2n}}{{{n^2} + 1}}\\ = 5 - \lim \dfrac{{\dfrac{1}{n}\cos 2n}}{{1 + \dfrac{1}{{{n^2}}}}}\\ = 5 - 0 = 5\end{array}\)

Câu 6: Đáp án B

\(\begin{array}{l}\lim \dfrac{{1 + 3 + 5 + ... + (2n + 1)}}{{3{n^2} + 4}} = \lim \dfrac{{\dfrac{{n + 1}}{2}(2n + 2)}}{{3{n^2} + 4}}\\ = \lim \dfrac{{{n^2} + 2n + 1}}{{3{n^2} + 4}}\\ = \lim \dfrac{{1 + \dfrac{2}{n} + \dfrac{1}{{{n^2}}}}}{{3 + \dfrac{4}{{{n^2}}}}} = \dfrac{1}{3}\end{array}\)

Câu 7: Đáp án A

\(\lim \dfrac{{\cos n + \sin n}}{{{n^2} + 1}} = \lim \dfrac{{\dfrac{1}{{{n^2}}}\left( {\cos n + \sin n} \right)}}{{1 + \dfrac{1}{{{n^2}}}}} = 0\)

Câu 8: Đáp án B

Câu 9: Đáp án D

\(\lim \sqrt[n]{a} = \lim {a^{\dfrac{1}{n}}} = 1\)

Câu 10: Đáp án B

\(\begin{array}{l}\lim \left[ {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{n(n + 1)}}} \right]\\ = \lim \left[ {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right]\\ = \lim \left( {1 - \dfrac{1}{{n + 1}}} \right) = 1\end{array}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu