Chương 4 Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

Bình chọn:
4.9 trên 7 phiếu
Bài 6 trang 104

Cho hình chóp S.ABCD có đáy là ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho \(AD = 3AM\). Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.

Xem lời giải

Bài 6 trang 100

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ. a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành. b) Chứng minh rằng (IK//BC) c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC)

Xem lời giải

Bài 5 trang 94

Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho \(MA = 2MS,NS = 2NC\) a) Xác định giao điểm của MN với mặt phẳng (ABC) b) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABC)

Xem lời giải

Bài 10 trang 120

Một khối gỗ có các mặt đều là một phần của mặt phẳng với (ABCD) // (EFGH), CK // DH. Khối gỗ bị hỏng một góc (Hình 91). Bác thợ mộc muốn làm đẹp khối gỗ bằng cách cắt khối gỗ theo mặt phẳng (R) đi qua K và song song với mặt phẳng (ABCD).

Xem lời giải

Bài 7 trang 100

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.

Xem lời giải

Bài 6 trang 94

Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA. a) Xác định giao điểm của CD với hai mặt phẳng (SAB) và (SCD) b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) c) Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC)

Xem lời giải

Bài 7 trang 94

Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.

Xem lời giải

Bài viết được xem nhiều nhất