Câu 3 trang 43 SGK Vật Lý 12 Nâng cao


Tính thế năng, động năng và cơ năng của con lắc đơn ở một vị trí bất kì

Đề bài

Tính thế năng, động năng và cơ năng của con lắc đơn ở một vị trí bất kì (li độ góc \(\alpha \)) và thử lại rằng cơ năng không đổi trong chuyển động.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Xét con lắc đơn, ở một vị trí bất kì (có li độ góc \(\alpha \))

a) Biểu thức thế năng :    \({W_t} = mgh = mg\ell (1 - \cos \alpha )\)

Với dao động nhỏ :\(1 - \cos \alpha = {{{\alpha ^2}} \over 2}\text{ và }\alpha = {s \over \ell }.\)

Thay vào  \( \Rightarrow {W_t} = {1 \over 2}m{g \over \ell }{s^2} = {1 \over 2}m{\omega ^2}{s^2}\)                                                 

b) Biểu thức động năng :\({W_đ} = {1 \over 2}m{v^2}\)

với \({v^2} = 2g\ell (\cos \alpha - \cos {\alpha _0}).\)

Dao động nhỏ :

\(1 - \cos \alpha = {{{\alpha ^2}} \over 2};1 - \cos {\alpha _0} = {{\alpha _0^2} \over 2}\) và \(\alpha = {s \over \ell }.\)

Thay vào :\({W_đ} = {1 \over 2}m{\omega ^2}(s_0^2 - {s^2}).\)

c) Cơ năng :\(W = {W_đ} + {W_t} = {1 \over 2}m{\omega ^2}(s_0^2 - {s^2}) - {1 \over 2}m{\omega ^2}{s^2}\)

\( \Rightarrow {W} = {1 \over 2}m{\omega ^2}s_0^2\)  không đổi trong chuyển động.

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí