Đề bài

Số nghiệm của phương trình: ${\sin ^{2015}}x - {\cos ^{2016}}x = 2\left( {{{\sin }^{2017}}x - {{\cos }^{2018}}x} \right) + \cos 2x$ trên $\left[ { - 10;30} \right]$ là:

  • A.

    $46$.

  • B.

    $51$.

  • C.

    $50$.

  • D.

    $44$.

Phương pháp giải

- Chuyển vế, biến đổi phương trình về dạng tích.

- Giải phương trình bằng phương pháp đánh giá, sử dụng chú ý \( - 1 \le \sin x \le 1, - 1 \le \cos x \le 1\)

Lời giải của GV Loigiaihay.com

Ta có: ${\sin ^{2015}}x - {\cos ^{2016}}x = 2\left( {{{\sin }^{2017}}x - {{\cos }^{2018}}x} \right) + \cos 2x$

$ \Leftrightarrow {\sin ^{2015}}x\left( {1 - 2{{\sin }^2}x} \right) + {\cos ^{2016}}x\left( {2{{\cos }^2}x - 1} \right) = \cos 2x$

$ \Leftrightarrow {\sin ^{2015}}x.\cos 2x + {\cos ^{2016}}x.\cos 2x = \cos 2x$$ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\{\sin ^{2015}}x + {\cos ^{2016}}x = 1\end{array} \right.$.

Với $\cos 2x = 0$$ \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}$

Vì $x \in \left[ { - 10;30} \right]$$ \Rightarrow  - 10 \le \dfrac{\pi }{4} + k\dfrac{\pi }{2} \le 30$$ \Leftrightarrow  - \dfrac{{20}}{\pi } - \dfrac{1}{2} \le k \le \dfrac{{60}}{\pi } - \dfrac{1}{2}$$ \Rightarrow  - 6 \le k \le 18$.

Với ${\sin ^{2015}}x + {\cos ^{2016}}x = 1$. Ta có ${\sin ^{2015}}x \le {\sin ^2}x;{\cos ^{2016}}x \le {\cos ^2}x$.

Do đó $1 = {\sin ^{2015}}x + {\cos ^{2016}}x \le {\sin ^2}x + {\cos ^2}x = 1$ suy ra $\left[ \begin{array}{l}\sin x = 0,\cos x =  \pm 1\\\sin x = 1,\cos x = 0\end{array} \right.$.

Nếu $\sin x = 0 \Leftrightarrow x = k\pi ,k \in \mathbb{Z}$.

Vì $x \in \left[ { - 10;30} \right]$$ \Rightarrow  - 10 \le k\pi  \le 30$$ \Leftrightarrow \dfrac{{ - 10}}{\pi } \le k  \le \dfrac{{30}}{\pi }$ $ \Rightarrow  - 3 \le k \le 9$.

Nếu $\sin x = 1 \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi ,k \in \mathbb{Z}$.

Vì $x \in \left[ { - 10;30} \right]$$ \Rightarrow  - 10 \le \dfrac{\pi }{2} + k2\pi  \le 30$$ \Leftrightarrow  - \dfrac{5}{\pi } - \dfrac{1}{4} \le k \le \dfrac{{15}}{\pi } - \dfrac{1}{4}$$ \Rightarrow  - 1 \le k \le 4$.

Ngoài ra điểm diểu diễn các nghiệm của mỗi họ nghiệm $x=\dfrac{\pi }{4} + k\dfrac{\pi }{2}; x = k\pi ; x = \dfrac{\pi }{2} + k2\pi$ đều phân biệt nên các nghiệm thỏa bài toán là khác nhau.

Vậy số nghiệm của phương trình đã cho là: $13 + 6 + 25 = 44$.

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình \(\sqrt {1 + \sin x}  + \sqrt {1 + \cos x}  = m\) có nghiệm khi và chỉ khi

Xem lời giải >>
Bài 2 :

Gọi \(S\) là tổng tất cả các nghiệm thuộc \(\left[ {0;20\pi } \right]\) của phương trình\(2{\cos ^2}x - \sin x - 1 = 0\). Khi đó, giá trị của \(S\) bằng :

Xem lời giải >>
Bài 3 :

Gọi \(S\) là tập hợp các nghiệm thuộc khoảng \(\left( {0;100\pi } \right)\) của phương trình \({\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2} + \sqrt 3 \cos x = 3\). Tổng các phần tử của \(S\) là

Xem lời giải >>
Bài 4 :

Tổng các nghiệm của phương trình \(2\cos 3x\left( {2\cos 2x + 1} \right) = 1\) trên đoạn \(\left[ { - 4\pi ;6\pi } \right]\) là:

Xem lời giải >>
Bài 5 :

Số nghiệm thuộc đoạn $\left[ {0;2017} \right]$ của phương trình \(\dfrac{{\sqrt {1 + \cos x}  + \sqrt {1 - \cos x} }}{{\sin x}} = 4\cos x\) là

Xem lời giải >>
Bài 6 :

Gọi \(M\), \(m\) lần lượt là giá lớn nhất, giá trị nhỏ nhất của hàm số $y = {\sin ^{2018}}x + {\cos ^{2018}}x$ trên \(\mathbb{R}\). Khi đó:

Xem lời giải >>
Bài 7 :

Tìm \(m\) để phương trình \(2{\sin ^2}x - \left( {2m + 1} \right)\sin x + 2m - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - \dfrac{\pi }{2};0} \right)\).

Xem lời giải >>
Bài 8 :

Số các giá trị nguyên của \(m\) để phương trình \({\cos ^2}x + \sqrt {\cos x + m}  = m\) có nghiệm là:

Xem lời giải >>
Bài 9 :

Số giá trị nguyên của tham số \(m\) để phương trình \(\sin 2x + \sqrt[{}]{2}\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = m\) có đúng một nghiệm thực thuộc khoảng \(\left( {0\,;\,\dfrac{{3\pi }}{4}} \right)\)?

Xem lời giải >>
Bài 10 :

Cho phương trình \(\left( {1 + \cos x} \right)\left( {\cos 4x - m\cos x} \right) = m{\sin ^2}x\). Tìm tất cả các giá trị của \(m\) để phương trình có đúng \(3\) nghiệm phân biệt thuộc \(\left[ {0\,;\,\dfrac{{2\pi }}{3}} \right]\).

Xem lời giải >>
Bài 11 :

Khẳng định nào sau đây là đúng về phương trình \(\sin \left( {\dfrac{x}{{{x^2} + 6}}} \right) + \cos \left( {\dfrac{\pi }{2} + \dfrac{{80}}{{{x^2} + 32x + 332}}} \right) = 0\)?

Xem lời giải >>
Bài 12 :

Gọi \(M,m\) lần lượt GTLN, GTNN của hàm số \(y = 2{\sin ^3}x + {\cos ^3}x\). Giá trị biểu thức \(T = {M^2} + {m^2}\) là:

Xem lời giải >>