Gọi \(M\), \(m\) lần lượt là giá lớn nhất, giá trị nhỏ nhất của hàm số $y = {\sin ^{2018}}x + {\cos ^{2018}}x$ trên \(\mathbb{R}\). Khi đó:
-
A.
\(M = 2\),\(m = \dfrac{1}{{{2^{1008}}}}\).
-
B.
\(M = 1\), \(m = \dfrac{1}{{{2^{1009}}}}\).
-
C.
\(M = 1\), \(m = 0\).
-
D.
\(M = 1\), \(m = \dfrac{1}{{{2^{1008}}}}\).
Sử dụng các đánh giá \(0 \le {\sin ^2}x \le 1;\) \(0 \le {\cos ^2}x \le 1\) và bất đẳng thức \(\dfrac{{{a^n} + {b^n}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^n},\left( {a,b > 0} \right)\) để tìm GTLN, GTNN của hàm số.
Ta có: \(0 \le {\sin ^2}x \le 1;\) \(0 \le {\cos ^2}x \le 1\) nên \(0 \le {\sin ^{2018}}x \le {\sin ^2}x;\) \(0 \le {\cos ^{2018}}x \le {\cos ^2}x\)
Do đó: \({\sin ^{2018}}x + {\cos ^{2018}}x \le {\sin ^2}x + {\cos ^2}x = 1\) hay \(y \le 1\)
Dấu \('' = ''\) xảy ra khi \(\sin x = 0\) hoặc \(\cos x = 0\)
Lại có, áp dụng bất đẳng thức \(\dfrac{{{a^n} + {b^n}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^n},\left( {a,b > 0} \right)\) ta có:
\({\sin ^{2018}}x + {\cos ^{2018}}x\) \( = {\left( {{{\sin }^2}x} \right)^{1009}} + {\left( {{{\cos }^2}x} \right)^{1009}}\) \( \ge 2.{\left( {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{2}} \right)^{1009}} = \dfrac{1}{{{2^{1008}}}}\)
Dấu \('' = ''\) xảy ra khi \({\sin ^2}x = {\cos ^2}x = \dfrac{1}{2}\)
Vậy \(m = \dfrac{1}{{{2^{1008}}}},M = 1\)
Đáp án : D
Các bài tập cùng chuyên đề
Phương trình \(\sqrt {1 + \sin x} + \sqrt {1 + \cos x} = m\) có nghiệm khi và chỉ khi
Gọi \(S\) là tổng tất cả các nghiệm thuộc \(\left[ {0;20\pi } \right]\) của phương trình\(2{\cos ^2}x - \sin x - 1 = 0\). Khi đó, giá trị của \(S\) bằng :
Gọi \(S\) là tập hợp các nghiệm thuộc khoảng \(\left( {0;100\pi } \right)\) của phương trình \({\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2} + \sqrt 3 \cos x = 3\). Tổng các phần tử của \(S\) là
Tổng các nghiệm của phương trình \(2\cos 3x\left( {2\cos 2x + 1} \right) = 1\) trên đoạn \(\left[ { - 4\pi ;6\pi } \right]\) là:
Số nghiệm thuộc đoạn $\left[ {0;2017} \right]$ của phương trình \(\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sin x}} = 4\cos x\) là
Tìm \(m\) để phương trình \(2{\sin ^2}x - \left( {2m + 1} \right)\sin x + 2m - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - \dfrac{\pi }{2};0} \right)\).
Số các giá trị nguyên của \(m\) để phương trình \({\cos ^2}x + \sqrt {\cos x + m} = m\) có nghiệm là:
Số nghiệm của phương trình: ${\sin ^{2015}}x - {\cos ^{2016}}x = 2\left( {{{\sin }^{2017}}x - {{\cos }^{2018}}x} \right) + \cos 2x$ trên $\left[ { - 10;30} \right]$ là:
Số giá trị nguyên của tham số \(m\) để phương trình \(\sin 2x + \sqrt[{}]{2}\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = m\) có đúng một nghiệm thực thuộc khoảng \(\left( {0\,;\,\dfrac{{3\pi }}{4}} \right)\)?
Cho phương trình \(\left( {1 + \cos x} \right)\left( {\cos 4x - m\cos x} \right) = m{\sin ^2}x\). Tìm tất cả các giá trị của \(m\) để phương trình có đúng \(3\) nghiệm phân biệt thuộc \(\left[ {0\,;\,\dfrac{{2\pi }}{3}} \right]\).
Khẳng định nào sau đây là đúng về phương trình \(\sin \left( {\dfrac{x}{{{x^2} + 6}}} \right) + \cos \left( {\dfrac{\pi }{2} + \dfrac{{80}}{{{x^2} + 32x + 332}}} \right) = 0\)?
Gọi \(M,m\) lần lượt GTLN, GTNN của hàm số \(y = 2{\sin ^3}x + {\cos ^3}x\). Giá trị biểu thức \(T = {M^2} + {m^2}\) là: