Gọi \(S\) là tập hợp các nghiệm thuộc khoảng \(\left( {0;100\pi } \right)\) của phương trình \({\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2} + \sqrt 3 \cos x = 3\). Tổng các phần tử của \(S\) là
-
A.
$\dfrac{{7400\pi }}{3}$.
-
B.
$\dfrac{{7525\pi }}{3}$.
-
C.
$\dfrac{{7375\pi }}{3}$.
-
D.
$\dfrac{{7550\pi }}{3}$.
- Biến đổi phương trình về phương trình thuần nhất đối với \(\sin x,\cos x\)
- Giải phương trình tìm nghiệm thuộc \(\left( {0;100\pi } \right)\) và kết luận.
Ta có \({\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2} + \sqrt 3 \cos x = 3\)\( \Leftrightarrow 1 + \sin x + \sqrt 3 \cos x = 3\)\( \Leftrightarrow \sin x + \sqrt 3 \cos x = 2\)
\( \Leftrightarrow \dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x = 1\)\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{3}} \right) = 1\)\( \Leftrightarrow x = \dfrac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\).
Theo đề bài cho ta có \(0 < x < 100\pi \)\( \Leftrightarrow 0 < \dfrac{\pi }{6} + k2\pi < 100\pi \)\( \Leftrightarrow - \dfrac{1}{{12}} < k < \dfrac{{599}}{{12}}\)
Mà \(k \in \mathbb{Z} \Rightarrow k \in \left\{ {0;1;2;3;4,....;48;49} \right\}\)
Vậy \(S = \dfrac{\pi }{6} + \dfrac{\pi }{6} + 2\pi + \dfrac{\pi }{6} + 2 \times 2\pi + ...... + \dfrac{\pi }{6} + 49 \times 2\pi \)\( = \dfrac{{50\pi }}{6} + 2\pi \left( {1 + 2 + 3 + 4 + ..... + 49} \right)\)
\( = \dfrac{{50\pi }}{6} + 2\pi \dfrac{{49\left( {49 + 1} \right)}}{2} = \dfrac{{7375\pi }}{3}\).
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình \(\sqrt {1 + \sin x} + \sqrt {1 + \cos x} = m\) có nghiệm khi và chỉ khi
Gọi \(S\) là tổng tất cả các nghiệm thuộc \(\left[ {0;20\pi } \right]\) của phương trình\(2{\cos ^2}x - \sin x - 1 = 0\). Khi đó, giá trị của \(S\) bằng :
Tổng các nghiệm của phương trình \(2\cos 3x\left( {2\cos 2x + 1} \right) = 1\) trên đoạn \(\left[ { - 4\pi ;6\pi } \right]\) là:
Số nghiệm thuộc đoạn $\left[ {0;2017} \right]$ của phương trình \(\dfrac{{\sqrt {1 + \cos x} + \sqrt {1 - \cos x} }}{{\sin x}} = 4\cos x\) là
Gọi \(M\), \(m\) lần lượt là giá lớn nhất, giá trị nhỏ nhất của hàm số $y = {\sin ^{2018}}x + {\cos ^{2018}}x$ trên \(\mathbb{R}\). Khi đó:
Tìm \(m\) để phương trình \(2{\sin ^2}x - \left( {2m + 1} \right)\sin x + 2m - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - \dfrac{\pi }{2};0} \right)\).
Số các giá trị nguyên của \(m\) để phương trình \({\cos ^2}x + \sqrt {\cos x + m} = m\) có nghiệm là:
Số nghiệm của phương trình: ${\sin ^{2015}}x - {\cos ^{2016}}x = 2\left( {{{\sin }^{2017}}x - {{\cos }^{2018}}x} \right) + \cos 2x$ trên $\left[ { - 10;30} \right]$ là:
Số giá trị nguyên của tham số \(m\) để phương trình \(\sin 2x + \sqrt[{}]{2}\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = m\) có đúng một nghiệm thực thuộc khoảng \(\left( {0\,;\,\dfrac{{3\pi }}{4}} \right)\)?
Cho phương trình \(\left( {1 + \cos x} \right)\left( {\cos 4x - m\cos x} \right) = m{\sin ^2}x\). Tìm tất cả các giá trị của \(m\) để phương trình có đúng \(3\) nghiệm phân biệt thuộc \(\left[ {0\,;\,\dfrac{{2\pi }}{3}} \right]\).
Khẳng định nào sau đây là đúng về phương trình \(\sin \left( {\dfrac{x}{{{x^2} + 6}}} \right) + \cos \left( {\dfrac{\pi }{2} + \dfrac{{80}}{{{x^2} + 32x + 332}}} \right) = 0\)?
Gọi \(M,m\) lần lượt GTLN, GTNN của hàm số \(y = 2{\sin ^3}x + {\cos ^3}x\). Giá trị biểu thức \(T = {M^2} + {m^2}\) là: