Bài 6.3 trang 9 SGK Toán 11 tập 2 - Kết nối tri thức


Rút gọn các biểu thức sau:

Đề bài

Rút gọn các biểu thức sau:

a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\)                                     

b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các công thức \({a^m}:{a^n} = {a^{m - n}};{\left( {ab} \right)^n} = {a^n}.{b^n}.\)

Lời giải chi tiết

a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}} = \frac{{{x^5}}}{{{x^3}}}.\frac{{{y^{ - 2}}}}{y} = {x^{5 - 3}}.{y^{ - 2 - 1}} = {x^2}{y^{ - 3}}.\)                               

b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}} = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}} \right)}^{ - 3}}.{{\left( {{y^4}} \right)}^{ - 3}}}} = \frac{{{x^2}{y^{ - 3}}}}{{{x^3}.{y^{ - 12}}}} = \frac{{{x^2}}}{{{x^3}}}.\frac{{{y^{ - 3}}}}{{{y^{ - 12}}}} = \frac{1}{x}.{y^{ - 3 + 12}} = \frac{{{y^9}}}{x}\)


Bình chọn:
4.1 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí