Bài 61 trang 83 SGK Toán 7 tập 2

Bình chọn:
4.2 trên 152 phiếu

Giải bài 61 trang 83 SGK Toán 7 tập 2. Cho tam giác ABC

Đề bài

Cho tam giác \(ABC\) không vuông. Gọi \(H\) là trực tâm của nó.

a) Hãy chỉ ra các đường cao của tam giác \(HBC.\) Từ đó hãy chỉ ta trực tâm của tam giác đó.

b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác \(HAB, HAC.\)

Phương pháp giải - Xem chi tiết

Sử dụng dữ kiện \(H\) là trực tâm tam giác \(ABC\), tức \(H\) là giao điểm của ba đường cao của tam giác \(ABC.\)

Lời giải chi tiết

Các đường thẳng \(HA, HB, HC\) lần lượt cắt cạnh đối \(BC, AC, AB\) tại \(N, M, E.\)

a) \(∆HBC\) có:

\(HN ⊥ BC\) nên \(HN\) là đường cao

\(BE ⊥ HC\) nên \(BE\) là đường cao

\(CM ⊥ BH\) nên \(CM\) là đường cao

Mà \(A\) là giao điểm của các đường thẳng \(HN, BE, CM\) nên \(A\) là trực tâm của \(∆HBC\).

b) \(∆AHB\)

\(HE \bot AB \) nên \(HE\) là đường cao

\(BC \bot AH \) nên \(BC\) là đường cao

\(AC \bot BH\) nên \(AC\) là đường cao

Mà \(C\) là giao điểm của các đường \(HE, BC, AC\) nên \(C\) là trực tâm của \(∆AHB\)

\( ∆AHC\)

\(HM \bot AC\) nên \(HM\) là đường cao

\(AB \bot HC \) nên \(AB\) là đường cao

\(CB \bot AH \) nên \(CB\) là đường cao

Mà \(B\) là giao điểm của các đường \(HM,AB,CB\) nên \(B\) là trực tâm của \( ∆AHC\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.