Bài 5 trang 88 SGK Đại số 10


Giải bài 5 trang 88 SGK Đại số 10. Giải các hệ bất phương trình...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Giải các hệ bất phương trình

LG a

\(\left\{\begin{matrix} 6x+\dfrac{5}{7}<4x+7\\ \dfrac{8x+3}{2}< 2x+5; \end{matrix}\right.\)

Phương pháp giải:

- Giải từng bất phương trình tìm tập nghiệm.

- Lấy giao các tập nghiệm đó được tập nghiệm của hệ.

Lời giải chi tiết:

\(\left\{\begin{matrix} 6x+\dfrac{5}{7}<4x+7\\ \dfrac{8x+3}{2}< 2x+5; \end{matrix}\right.\)

\(6x + \dfrac{5}{7}< 4x + 7  \)

\(\Leftrightarrow     6x - 4x < 7 - \dfrac{5}{7}  \)

\( \Leftrightarrow 2x < \dfrac{{44}}{7}\)

\(\Leftrightarrow  x < \dfrac{22}{7}\) (1)

\(\dfrac{8x+3}{2} < 2x +5   \)

\( \Leftrightarrow 4x + \dfrac{3}{2} < 2x + 5\)

\(\Leftrightarrow     4x - 2x < 5 - \dfrac{3}{2}    \)

\( \Leftrightarrow 2x < \dfrac{7}{2}\)

\(\Leftrightarrow    x < \dfrac{7}{4}\) (2)

Kết hợp (1) và (2) ta được tập nghiệm của hệ bất phương trình: 

\(T= (-\infty ;\dfrac{22}{7})\) ∩ \((-\infty ;\dfrac{7}{4})\) = \((-\infty ;\dfrac{7}{4})\).

LG b

\(\left\{\begin{matrix} 15x-2>2x+\dfrac{1}{3}\\ 2(x-4))< \dfrac{3x-14}{2}. \end{matrix}\right.\)

Phương pháp giải:

- Giải từng bất phương trình tìm tập nghiệm.

- Lấy giao các tập nghiệm đó được tập nghiệm của hệ.

Lời giải chi tiết:

\(15x - 2 > 2x + \dfrac{1}{3} \)\(\Leftrightarrow 15x - 2x > 2 + \dfrac{1}{3}\)

\( \Leftrightarrow 13x > \dfrac{7}{3}\) \( \Leftrightarrow   x > \dfrac{7}{39}\)  (1)

\( 2(x - 4) < \dfrac{3x-14}{2}  \Leftrightarrow 2x - 8 < \dfrac{3}{2}x - 7\)

\(\Leftrightarrow 2x - \dfrac{3}{2}x < 8 - 7 \Leftrightarrow \dfrac{1}{2}x < 1 \)

\(\Leftrightarrow       x < 2\)    (2)

Kết hợp (1) và (2) ta được tập nghiệm của hệ bất phương trình là: \(S = \left ( \dfrac{7}{39} ; +\infty \right ) ∩ (-∞; 2) = \left ( \dfrac{7}{39} ; 2\right ).\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 49 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài