Bài 4 trang 88 SGK Đại số 10


Giải các phương trình sau...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau

LG a

 \(\dfrac{3x+1}{2}-\dfrac{x-2}{3}< \dfrac{1-2x}{4};\)

Phương pháp giải:

Quy đồng mẫu số đưa về bất phương trình bậc nhất bằng các phép biến đổi tương đương đã học.

Lời giải chi tiết:

\(\dfrac{3x+1}{2}-\dfrac{x-2}{3}< \dfrac{1-2x}{4}\)

\( \Leftrightarrow \dfrac{3x+1}{2}-\dfrac{x-2}{3}-\dfrac{1-2x}{4}<0\)

\( \Leftrightarrow \dfrac{{6\left( {3x + 1} \right)}}{{12}} - \dfrac{{4\left( {x - 2} \right)}}{{12}} - \dfrac{{3\left( {1 - 2x} \right)}}{{12}} < 0\)

\( \Leftrightarrow 6(3x + 1) - 4(x - 2) - 3(1 - 2x) \)\(< 0\)

\( \Leftrightarrow 18x + 6 - 4x + 8 - 3 + 6x < 0\)

\( \Leftrightarrow 20x + 11 < 0\)

\( \Leftrightarrow20x < - 11\)

\( \Leftrightarrow x < -\dfrac{11}{20}.\)

Vậy tập nghiệm của bất phương trình là: \(T = \left( { - \infty ; - {{11} \over {20}}} \right)\)

LG b

\((2x - 1)(x + 3) - 3x + 1 \)\(≤ (x - 1)(x + 3) + x^2– 5\).

Phương pháp giải:

Khai triển và rút gọn bất phương trình đưa về bất phương trình bậc nhất bằng các phép biến đổi tương đương đã học.

Lời giải chi tiết:

\((2x - 1)(x + 3) - 3x + 1 \)\(≤ (x - 1)(x + 3) + x^2– 5\)

\( \Leftrightarrow 2x^2+ 5x – 3 – 3x + 1 \)\(≤ x^2+ 2x – 3 + x^2- 5\)

\(\Leftrightarrow 2{x^2} + 2x - 2 \le 2{x^2} + 2x - 8\)

\( \Leftrightarrow 2{x^2} + 2x - 2{x^2} - 2x \le  - 8 + 2\)

\( \Leftrightarrow 0x ≤ -6\) ( Vô lý).

Vậy bất phương trình vô nghiệm.

Loigiaihay.com


Bình chọn:
4.3 trên 60 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.