Bài 2 trang 88 SGK Đại số 10


Giải bài 2 trang 88 SGK Đại số 10. Chứng minh các bất phương trình sau vô nghiệm...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các bất phương trình sau vô nghiệm.

LG a

\(x^2+ \sqrt{x+8}\leq -3;\)

Phương pháp giải:

Đánh giá mỗi vế của các bất phương trình rồi nhận xét.

Lời giải chi tiết:

\(x^2+ \sqrt{x+8}\leq -3\)

ĐK: \(x + 8 \ge 0 \Leftrightarrow x \ge  - 8\)

Ta có: \(\left\{ \begin{array}{l}{x^2} \ge 0\\\sqrt {x + 8}  \ge 0\end{array} \right.\) \( \Rightarrow {x^2} + \sqrt {x + 8}  \ge 0,\forall x \ge  - 8\)

\( \Rightarrow {x^2} + \sqrt {x + 8}  >  - 3,\forall x \ge  - 8\)

Vậy bất phương trình \({x^2} + \sqrt {x + 8}  \le  - 3\) vô nghiệm.

LG b

\(\sqrt{1+2(x-3)^{2}}+\sqrt{5-4x+x^{2}}< \dfrac{3}{2};\)

Lời giải chi tiết:

\(\sqrt{1+2(x-3)^{2}}+\sqrt{5-4x+x^{2}}< \dfrac{3}{2}\)

Ta có: \({\left( {x - 3} \right)^2} \ge 0 \Rightarrow 2{\left( {x - 3} \right)^2} \ge 0\) \( \Rightarrow 1 + 2{\left( {x - 3} \right)^2} \ge 1\) \( \Rightarrow \sqrt {1 + 2{{\left( {x - 3} \right)}^2}}  \ge 1\)

\(5 - 4x + {x^2}\) \( = \left( {{x^2} - 4x + 4} \right) + 1\) \( = {\left( {x - 2} \right)^2} + 1 \ge 1\) \( \Rightarrow \sqrt {5 - 4x + {x^2}}  \ge 1\)

\( \Rightarrow \sqrt {1 + 2{{\left( {x - 3} \right)}^2}}  + \sqrt {5 - 4x + {x^2}} \) \( \ge 1 + 1 = 2 > \dfrac{3}{2}\)

\( \Rightarrow \) BPT \(\sqrt {1 + 2{{\left( {x - 3} \right)}^2}}  + \sqrt {5 - 4x + {x^2}}  < \dfrac{3}{2}\) vô nghiệm.

LG c

\(\sqrt{1+x^{2}}-\sqrt{7+x^{2}}> 1.\)

Lời giải chi tiết:

\(\sqrt{1+x^{2}}-\sqrt{7+x^{2}}> 1\)

Vì \(1 < 7 \Rightarrow 1 + {x^2} < 7 + {x^2}\) \( \Rightarrow \sqrt {1 + {x^2}}  < \sqrt {7 + {x^2}} \)

\( \Rightarrow \sqrt {1 + {x^2}}  - \sqrt {7 + {x^2}}  < 0 < 1\)

\( \Rightarrow \) BPT \(\sqrt {1 + {x^2}}  - \sqrt {7 + {x^2}}  > 1\) vô nghiệm.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 64 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài