Bài 1 trang 87 SGK Đại số 10


Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giá trị \(x\) thỏa mãn điều kiện của mỗi bất phương trình sau:

LG a

\(\dfrac{1}{x}< 1-\dfrac{1}{x+1};\)

Phương pháp giải:

\(\dfrac{A}{B}\)  có nghĩa khi và chỉ khi \(B\ne 0\)

\(\sqrt{A}\)  có nghĩa khi và chỉ khi \(A \ge 0\)

\(\dfrac{1}{{\sqrt A }}\)  có nghĩa khi và chỉ khi \(A>0\)

Lời giải chi tiết:

ĐK: 

\(\left\{ \begin{array}{l}
x \ne 0\\
x + 1 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 0\\
x \ne - 1
\end{array} \right.\)

TXĐ: \(D =\mathbb R\backslash \left\{ {0; - 1} \right\}\)

LG b

\(\dfrac{1}{x^{2}-4}< \dfrac{2x}{x^{2}-4x+3};\)

Lời giải chi tiết:

ĐK: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} - 4 \ne 0\\
{x^2} - 4x + 3 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\
\left( {x - 1} \right)\left( {x - 3} \right) \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne \pm 2\\
x \ne 1,x \ne 3
\end{array} \right.
\end{array}\)

TXĐ: \(D =\mathbb R\backslash \left\{ { \pm 2;1;3} \right\}\)

LG c

\(2|x| - 1 + \sqrt[3]{x-1}<\dfrac{2x}{x+1};\)

Lời giải chi tiết:

ĐK: \(x+1\ne 0\) \(\Leftrightarrow x\ne -1\)

TXĐ: \(D =\mathbb R\backslash {\rm{\{ }} - 1\} \)

LG d

\(2\sqrt{1-x}> 3x + \dfrac{1}{x+4}.\)

Lời giải chi tiết:

ĐK: 

\(\left\{ \begin{array}{l}
1 - x \ge 0\\
x + 4 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 1\\
x \ne - 4
\end{array} \right.\)

TXĐ: \(D = ( - \infty ; - 4) \cup ( - 4;1]\) hoặc \(D = \left( { - \infty ;1} \right]\backslash \left\{ { - 4} \right\}\)

Loigiaihay.com


Bình chọn:
4.4 trên 61 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài