Bài 1 trang 87 SGK Đại số 10


Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau...

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giá trị \(x\) thỏa mãn điều kiện của mỗi bất phương trình sau:

LG a

\(\dfrac{1}{x}< 1-\dfrac{1}{x+1};\)

Phương pháp giải:

\(\dfrac{A}{B}\)  có nghĩa khi và chỉ khi \(B\ne 0\)

\(\sqrt{A}\)  có nghĩa khi và chỉ khi \(A \ge 0\)

\(\dfrac{1}{{\sqrt A }}\)  có nghĩa khi và chỉ khi \(A>0\)

Lời giải chi tiết:

ĐK: 

\(\left\{ \begin{array}{l}
x \ne 0\\
x + 1 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ne 0\\
x \ne - 1
\end{array} \right.\)

TXĐ: \(D =\mathbb R\backslash \left\{ {0; - 1} \right\}\)

LG b

\(\dfrac{1}{x^{2}-4}< \dfrac{2x}{x^{2}-4x+3};\)

Lời giải chi tiết:

ĐK: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} - 4 \ne 0\\
{x^2} - 4x + 3 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\
\left( {x - 1} \right)\left( {x - 3} \right) \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ne \pm 2\\
x \ne 1,x \ne 3
\end{array} \right.
\end{array}\)

TXĐ: \(D =\mathbb R\backslash \left\{ { \pm 2;1;3} \right\}\)

LG c

\(2|x| - 1 + \sqrt[3]{x-1}<\dfrac{2x}{x+1};\)

Lời giải chi tiết:

ĐK: \(x+1\ne 0\) \(\Leftrightarrow x\ne -1\)

TXĐ: \(D =\mathbb R\backslash {\rm{\{ }} - 1\} \)

LG d

\(2\sqrt{1-x}> 3x + \dfrac{1}{x+4}.\)

Lời giải chi tiết:

ĐK: 

\(\left\{ \begin{array}{l}
1 - x \ge 0\\
x + 4 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \le 1\\
x \ne - 4
\end{array} \right.\)

TXĐ: \(D = ( - \infty ; - 4) \cup ( - 4;1]\) hoặc \(D = \left( { - \infty ;1} \right]\backslash \left\{ { - 4} \right\}\)

Loigiaihay.com


Bình chọn:
4.4 trên 71 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.