Bài 5 trang 8 SGK Toán 7 tập 1

Bình chọn:
4.7 trên 245 phiếu

Giải bài 5 trang 8 SGK Toán 7 tập 1. Hãy chứng tỏ rằng

Đề bài

Giả sử  \(x = \frac{a}{m}\); \( y = \frac{b}{m}\) \(\left( {a,\, b, \, m \in Z,\;b \ne 0} \right)\) và \(x < y.\) Hãy chứng tỏ rằng nếu chọn  \(z =\frac{a + b}{2m}\) thì ta có \(x < z < y.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng tính chất: Nếu \(a,\;b,\;c \in Z\) và \(a<b\) thì \(a + c < b+c.\)

Lời giải chi tiết

Theo đề bài ta có \(x = \frac{a}{m}\); \( y = \frac{b}{m}\) \(\left( {a,\, b, \, m \in Z,\;b \ne 0} \right)\) 

Vì \(x < y\) nên ta suy ra \(a < b.\)

Ta có :  \(x =\frac{2a}{2m}\),  \(y =\frac{2b}{2m}\);\( z = \frac{a + b}{2m}\)

Vì \(a < b \Rightarrow a + a < a +b \Rightarrow 2a < a + b.\)

Do \(2a< a +b\) nên \(x < z  \, \, \, \, (1)\)

Vì \(a < b \Rightarrow a + b < b + b \Rightarrow a + b < 2b.\)

Do \(a+b < 2b\) nên \(z < y \, \, \,   (2)\)

Từ (1) và (2) ta suy ra \(x < z < y.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan