Bài 4 trang 72 SGK Toán 11 tập 1 - Cánh Diều


Tính các giới hạn sau: a) (mathop {lim }limits_{x to + infty } frac{{9x + 1}}{{3x - 4}};) b) (mathop {lim }limits_{x to - infty } frac{{7x - 11}}{{2x + 3}};) c) (mathop {lim }limits_{x to + infty } frac{{sqrt {{x^2} + 1} }}{x};) d) (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 1} }}{x};) e) (mathop {lim }limits_{x to {6^ - }} frac{1}{{x - 6}};) g) (mathop {lim }limits_{x to {7^ + }} frac{1}{{x - 7}}.)

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}};\)           

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}};\)           

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\)              

e) \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}};\)            

g) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}.\)

Phương pháp giải - Xem chi tiết

- Sử dụng định lí về phép toán trên giới hạn hữu hạn của hàm số.

- Sử dụng giới hạn cơ bản sau: \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} =  + \infty ;\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} =  - \infty \)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}}  = \sqrt {1 + 0}  = 1\)

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty }  - \sqrt {1 + \frac{1}{{{x^2}}}}  =  - \sqrt {1 + 0}  =  - 1\)

e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} =  - \infty \)                

g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} =  + \infty \)


Bình chọn:
3.6 trên 5 phiếu
  • Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được (Nleft( t right) = frac{{50t}}{{t + 4}},,left( {t ge 0} right)) bộ phận mỗi ngày sau t ngày đào tạo. Tính (mathop {lim }limits_{t to + infty } Nleft( t right)) và cho biết ý nghĩa của kết quả.

  • Bài 6 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x. a) Tính chi phí trung bình (overline C left( x right)) để sản xuất một sản phẩm. b) Tính (mathop {lim }limits_{x to + infty } overline C left( x right)) và cho biết ý nghĩa của kết quả.

  • Bài 3 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to 2} left( {{x^2} - 4x + 3} right);) b) (mathop {lim }limits_{x to 3} frac{{{x^2} - 5x + 6}}{{x - 3}};) c) (mathop {lim }limits_{x to 1} frac{{sqrt x - 1}}{{x - 1}}.)

  • Bài 2 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Biết rằng hàm số (fleft( x right)) thỏa mãn (mathop {lim }limits_{x to {2^ - }} fleft( x right) = 3) và (mathop {lim }limits_{x to {2^ + }} fleft( x right) = 5.) Trong trường hợp này có tồn tại giới hạn (mathop {lim }limits_{x to 2} fleft( x right)) hay không? Giải thích.

  • Bài 1 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Sử dụng định nghĩa, tìm các giới hạn sau: a) (mathop {lim }limits_{x to - 3} {x^2};) b) (mathop {lim }limits_{x to 5} frac{{{x^2} - 25}}{{x - 5}}.)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí