Bài 3.14 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức>
Người ta ghi lại tuổi thọ của một số con ong cho kết quả như sau: Tuổi thọ (ngày) (left[ {0;20} right)) (left[ {20;40} right)) (left[ {40;60} right)) (left[ {60;80} right)) (left[ {80;100} right)) Số lượng (5) (12) (23) (31) (29) Tìm mốt của mẫu số liệu. Giải thích ý nghĩa của giá trị nhận được.
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Người ta ghi lại tuổi thọ của một số con ong cho kết quả như sau:
Tìm mốt của mẫu số liệu. Giải thích ý nghĩa của giá trị nhận được.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Để tìm mốt của mẫu số liệu ghép nhóm, ta thực hiện theo các bước sau:
Bước 1: Xác định nhóm có tần số lớn nhất (gọi là nhóm chứa mốt), giả sử là nhóm \(j:\left[ {{a_j};\;{a_{j + 1}}} \right)\).
Bước 2: Mốt được xác định là: \({M_0} = {a_j} + \frac{{{m_j} - {m_{j - 1}}}}{{\left( {{m_j} - {m_{j - 1}}} \right) + \left( {{m_j} - {m_{j + 1}}} \right)}}.h\).
Trong đó \({m_j}\) là tần số của nhóm j (quy ước \({m_0} = {m_{k + 1}} = 0)\) và h là độ dài của nhóm.
Lời giải chi tiết
Tần số lớn nhất là 31 nên nhóm chứa mốt là \(\left[ {60;80} \right).\;\)Ta có:
\(j = 4;\;\;{a_4} = 60;\;\;{m_4} = 31;\;\;{m_3} = 23;\;\;{m_5} = 29;\;\;h = 20\). Do đó,
\({M_0} = 60 + \frac{{31 - 23}}{{\left( {31 - 23} \right) + \left( {31 - 29} \right)}} \times 20 = 76\).
Ý nghĩa: Đa số các con ong có tuổi thọ là 76 ngày.
- Bài 3.15 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.13 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.12 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.11 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.10 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức