Bài 3.11 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức>
Nhóm chứa tứ phân vị thứ nhất là A. (left[ {0;20} right)) B. (left[ {20;40} right)) C. (left[ {40;60} right)) D. (left[ {60;80} right))
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Thời gian (phút) |
[0;20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Nhóm chứa tứ phân vị thứ nhất là
A. \(\left[ {0;20} \right)\) C. \(\left[ {40;60} \right)\)
B. \(\left[ {20;40} \right)\) D. \(\left[ {60;80} \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_1}\), giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right).\;\)Khi đó,
\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}}.\left( {{a_{p + 1}} - {a_p}} \right)\).
Trong đó, n là cỡ mẫu, \({m_p}\) là tần số nhóm p, với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Lời giải chi tiết
Cỡ mẫu n = 42.
Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{10}} + {x_{11}}}}{2}\). Do \({x_{10}},\;{x_{11}}\) đều thuộc nhóm \(\left[ {20;40} \right)\) nên nhóm náy chứa \({Q_1}\).
Đáp án: B.
- Bài 3.12 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.13 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.14 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.15 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.10 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức