Bài 3.12 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức>
Nhóm chứa trung vị là A. (left[ {0;200} right)) B. (left[ {20;40} right)) C. (left[ {40;60} right)) D. (left[ {60;80} right))
Đề bài
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Thời gian (phút) |
[0;20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Nhóm chứa trung vị là
A. \(\left[ {0;200} \right)\)
B. \(\left[ {20;40} \right)\)
C. \(\left[ {40;60} \right)\)
D. \(\left[ {60;80} \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\).
Lời giải chi tiết
Cỡ mẫu n = 42.
Trung vị \({M_e}\) là \(\frac{{{x_{21}} + {x_{22}}}}{2}\). Do \({x_{21}},\;{x_{22}}\) đều thuộc nhóm \(\left[ {40;60} \right)\) nên nhóm này chứa trung vị.
Đáp án: C.
- Bài 3.13 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.14 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.15 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.11 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 3.10 trang 69 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức