Bài 2 trang 47 SGK Toán 11 tập 2 - Cánh Diều>
Tìm tập xác định của các hàm số:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
a) \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\);
b) \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\);
c) \(y = {\log _\pi }x\);
d) \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\).
Phương pháp giải - Xem chi tiết
Dựa vào hệ số của hàm để xác định hàm đồng biến, nghịch biến.
Lời giải chi tiết
a) Do \(0 < \frac{{\sqrt 3 }}{2} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\) nghịch biến trên tập xác định của hàm số.
b) Do \(0 < \frac{{\sqrt[3]{{26}}}}{3} < 1\) => Hàm số \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\) nghịch biến trên tập xác định của hàm số.
c) Do \(\pi > 1\) => Hàm số \(y = {\log _\pi }x\) đồng biến trên tập xác định của hàm số.
d) Do \(0 < \frac{{\sqrt {15} }}{4} < 1\) => Hàm số \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\) nghịch biến trên tập xác định của hàm số.
Các bài khác cùng chuyên mục




