Bài 2 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo


Viết các biểu thức sau dưới dạng một luỹ thừa (left( {a > 0} right)):

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):

a) \(3.\sqrt 3 .\sqrt[4]{3}.\sqrt[8]{3}\);

b) \(\sqrt {a\sqrt {a\sqrt a } } \);

c) \(\frac{{\sqrt a .\sqrt[3]{a}.\sqrt[4]{a}}}{{{{\left( {\sqrt[5]{a}} \right)}^3}.{a^{\frac{2}{5}}}}}\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa luỹ thừa với số mũ hữu tỉ và các tính chất của căn bậc \(n\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(3.\sqrt 3 .\sqrt[4]{3}.\sqrt[8]{3} = {3.3^{\frac{1}{2}}}{.3^{\frac{1}{4}}}{.3^{\frac{1}{8}}} = {3^{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}}} = {3^{\frac{{15}}{8}}}\)

b) \(\sqrt {a\sqrt {a\sqrt a } }  = \sqrt {a\sqrt {a.{a^{\frac{1}{2}}}} }  = \sqrt {a\sqrt {{a^{1 + \frac{1}{2}}}} }  = \sqrt {a\sqrt {{a^{\frac{3}{2}}}} }  = \sqrt {a.{a^{\frac{3}{4}}}}  = \sqrt {{a^{1 + \frac{3}{4}}}}  = \sqrt {{a^{\frac{7}{4}}}}  = {a^{\frac{7}{8}}}\)

c) \(\frac{{\sqrt a .\sqrt[3]{a}.\sqrt[4]{a}}}{{{{\left( {\sqrt[5]{a}} \right)}^3}.{a^{\frac{2}{5}}}}} = \frac{{{a^{\frac{1}{2}}}.{a^{\frac{1}{3}}}.{a^{\frac{1}{4}}}}}{{\sqrt[5]{{{a^3}}}.{a^{\frac{2}{5}}}}} = \frac{{{a^{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}}}}}{{{a^{\frac{3}{5}}}.{a^{\frac{2}{5}}}}} = \frac{{{a^{\frac{{13}}{{12}}}}}}{{{a^{\frac{3}{5} + \frac{2}{5}}}}} = \frac{{{a^{\frac{{13}}{{12}}}}}}{a} = {a^{\frac{{13}}{{12}} - 1}} = {a^{\frac{1}{{12}}}}\)


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí