Giải mục 1 trang 6, 7 SGK Toán 11 tập 2 - Chân trời sáng tạo>
Cho biết dãy số (left( {{a_n}} right)) được xác định theo một quy luật nào đó và bốn số hạng đầu tiên của nó được cho như ở bảng dưới đây:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Hoạt động 1
Cho biết dãy số \(\left( {{a_n}} \right)\) được xác định theo một quy luật nào đó và bốn số hạng đầu tiên của nó được cho như ở bảng dưới đây:
a) Tìm quy luật của dãy số và tìm ba số hạng tiếp theo của nó.
b) Nếu viết các số hạng của dãy số dưới dạng luỹ thừa, thì bốn số hạng đầu tiên có thể viết thành \({2^4};{2^3};{2^2};{2^1}\). Dự đoán cách viết dưới dạng luỹ thừa của ba số hạng tiếp theo của dãy số và giải thích.
Phương pháp giải:
Dựa vào mối liên hệ giữa các số hạng của dãy số.
Lời giải chi tiết:
a) Quy luật: Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó chia cho 2.
Vậy ba số hạng tiếp theo là: \({a_5} = 1;{a_6} = \frac{1}{2};{a_7} = \frac{1}{4}\).
b) Các số hạng của dãy số có dạng \({2^n}\), với số mũ của số liền sau ít hơn số mũ của số liền trước 1 đơn vị.
Vậy ta có thể viết ba số hạng tiếp theo là: \({a_5} = {2^0};{a_6} = {2^{ - 1}};{a_7} = {2^{ - 2}}\).
Thực hành 1
Tính giá trị các biểu thức sau:
a) \({\left( { - 5} \right)^{ - 1}}\);
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}}\);
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}}\).
Phương pháp giải:
‒ Sử dụng các phép tính luỹ thừa.
‒ Sử dụng định nghĩa luỹ thừa của số mũ âm: Với số nguyên dương \(n\), số thực \(a \ne 0\), luỹ thừa của \(a\) với số mũ \( - n\) được xác định bởi: \({a^{ - n}} = \frac{1}{{{a^n}}}\).
Lời giải chi tiết:
a) \({\left( { - 5} \right)^{ - 1}} = \frac{1}{{{{\left( { - 5} \right)}^1}}} = \frac{1}{{ - 5}} = - \frac{1}{5}\)
b) \({2^0}.{\left( {\frac{1}{2}} \right)^{ - 5}} = {2^0}.\frac{1}{{{{\left( {\frac{1}{2}} \right)}^5}}} = 1.\frac{1}{{\frac{1}{{32}}}} = 32\)
c) \({6^{ - 2}}.{\left( {\frac{1}{3}} \right)^{ - 3}}:{2^{ - 2}} = \frac{1}{{{6^2}}}.\frac{1}{{{{\left( {\frac{1}{3}} \right)}^3}}}:\frac{1}{{{2^2}}} = \frac{1}{{36}}.\frac{1}{{\frac{1}{{27}}}}:\frac{1}{4} = \frac{1}{{36}}.27.4 = 3\)
Vận dụng 1
Trong khoa học, người ta thường phải ghi các số rất lớn hoặc rất bé. Để tránh phải viết và đếm quá nhiều chữ số 0, người ta quy ước cách ghi các số dưới dạng \(A{.10^m}\), trong đó \(1 \le A \le 10\) và \(m\) là số nguyên.
Khi một số được ghi dưới dạng này, ta nói nó được ghi dưới dạng kí hiệu khoa học.
Chẳng hạn, khoảng cách 149 600 000 km từ Trái Đất đến Mặt Trời được ghi dưới dạng kí hiệu khoa học là \(1,{496.10^8}\) km.
Ghi các đại lượng sau dưới dạng kí hiệu khoa học:
a) Vận tốc ánh sáng trong chân không là 299790000 m/s;
b) Khối lượng nguyên tử của oxygen là 0,000 000 000 000 000 000 000 000 026 57 kg.
Phương pháp giải:
Sử dụng các phép tính luỹ thừa.
Lời giải chi tiết:
a) Vận tốc ánh sáng trong chân không là \(2,{9979.10^8}\) m/s;
b) Khối lượng nguyên tử của oxygen là \(2,{657.10^{ - 26}}\) kg.
- Giải mục 2 trang 7, 8, 9 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 3 trang 9 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 4 trang 10, 11 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Giải mục 5 trang 11, 12 SGK Toán 11 tập 2 - Chân trời sáng tạo
- Bài 1 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo