Bài 17 trang 63 SGK Toán 7 tập 2


Giải bài 17 trang 63 SGK Toán 7 tập 2. Cho tam giác ABC

Đề bài

Cho tam giác \(ABC\) và \(M\) là một điểm nằm trong tam giác. Gọi \(I\) là giao điểm của đường thẳng \(BM\) và cạnh \(AC\).

a) So sánh \(MA\) với \(MI + IA\), từ đó chứng minh \(MA + MB < IB + IA.\)

b) So sánh \(IB\) với \(IC + CB\), từ đó chứng minh \(IB + IA < CA + CB\).

c) Chứng minh bất đẳng thức \(MA + MB < CA + CB.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức tam giác. 

Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại

Lời giải chi tiết

a) \( M\) nằm trong tam giác \(ABC\) nên ba điểm \(A, M, I\) không thẳng hàng. 

Áp dụng bất đẳng thức tam giác vào \(∆AMI\) ta có:

\(MA < MI + IA\)        (1)

Cộng \(MB\) vào hai vế của (1) ta được:

\(MA + MB < MB + MI + IA\)

Mà \(MB + MI = IB\)

\(\Rightarrow  MA + MB < IB + IA\) (điều phải chứng minh).

b) Ba điểm \(B, I, C\) không thẳng hàng.

Áp dụng bất đẳng thức tam giác vào \(∆BIC\) ta có:

\(IB < IC + BC\)       (2).

Cộng \(IA\) vào hai vế của (2) ta được:

\(IB + IA < IA + IC + BC\)

Mà \(IA + IC = AC\)

\(\Rightarrow IB + IA < AC + BC\) (điều phải chứng minh).

c) Vì \(MA + MB < IB + IA\) (chứng minh trên)

       \(IB + IA < AC + BC\) (chứng minh trên)

Suy ra \(MA + MB < CA + CB\) (điều phải chứng minh).

Loigiaihay.com


Bình chọn:
4.5 trên 341 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài