Bài 17 trang 63 SGK Toán 7 tập 2

Bình chọn:
4.5 trên 278 phiếu

Giải bài 17 trang 63 SGK Toán 7 tập 2. Cho tam giác ABC

Đề bài

Cho tam giác \(ABC\) và \(M\) là một điểm nằm trong tam giác. Gọi \(I\) là giao điểm của đường thẳng \(BM\) và cạnh \(AC\).

a) So sánh \(MA\) với \(MI + IA\), từ đó chứng minh \(MA + MB < IB + IA.\)

b) So sánh \(IB\) với \(IC + CB\), từ đó chứng minh \(IB + IA < CA + CB\).

c) Chứng minh bất đẳng thức \(MA + MB < CA + CB.\)

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức tam giác.

Lời giải chi tiết

a) \( M\) nằm trong tam giác \(ABC\) nên ba điểm \(A, M, I\) không thẳng hàng. 

Áp dụng bất đẳng thức tam giác vào \(∆AMI\) ta có:

\(MA < MI + IA\)        (1)

Cộng \(MB\) vào hai vế của (1) ta được:

\(MA + MB < MB + MI + IA\)

Mà \(MB + MI = IB\)

\(\Rightarrow  MA + MB < IB + IA\) (điều phải chứng minh).

b) Ba điểm \(B, I, C\) không thẳng hàng.

Áp dụng bất đẳng thức tam giác vào \(∆BIC\) ta có:

\(IB < IC + BC\)       (2).

Cộng \(IA\) vào hai vế của (2) ta được:

\(IB + IA < IA + IC + BC\)

Mà \(IA + IC = AC\)

\(\Rightarrow IB + IA < AC + BC\) (điều phải chứng minh).

c) Vì \(MA + MB < IB + IA\) (chứng minh trên)

       \(IB + IA < AC + BC\) (chứng minh trên)

Suy ra \(MA + MB < CA + CB\) (điều phải chứng minh).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.