Trắc nghiệm Bài 28: Phép chia đa thức một biến Toán 7 Kết nối tri thức
Đề bài
Tìm kết quả của phép chia 8x4 - 2x3 cho 4x2
- 
                    A.
                    
2x2
 - 
                    B.
                    
4x5
 - 
                    C.
                    
2x2 - 0,5.x
 - 
                    D.
                    
2x2 + 1
 
Phép chia 2x4 – x3 + 2x – 1 cho x2 – x + 1 có thương là:
- 
                    A.
                    
0,5. x2 + 2x – 1
 - 
                    B.
                    
- 2x2 + 2x – 1
 - 
                    C.
                    
2x2 + x – 1
 - 
                    D.
                    
2x2 + x + 1
 
Phép chia 2x5 – 3x3 + 1 cho -2x3 + 3 có dư là:
- 
                    A.
                    
3x2 – 3,5
 - 
                    B.
                    
–x2 + 1,5
 - 
                    C.
                    
x2 - 1,5
 - 
                    D.
                    
-3x2 + 3,5
 
Thương của phép chia đa thức một biến bậc 6 cho đa thức một biến bậc 2 là đa thức bậc mấy?
- 
                    A.
                    
2
 - 
                    B.
                    
3
 - 
                    C.
                    
4
 - 
                    D.
                    
Không xác định được
 
Tìm đa thức bị chia biết đa thức chia là \(\left( {{x^2} + x + 1} \right)\), thương là \(\left( {x + 3} \right)\), dư là \(x - 2\):
- 
                    A.
                    
\({x^3} + 4{x^2} + 5x + 1\)
 - 
                    B.
                    
\({x^3} - 4{x^2} + 5x + 1\)
 - 
                    C.
                    
\({x^3} - 4{x^2} - 5x + 1\)
 - 
                    D.
                    
\({x^3} + 4{x^2} - 5x + 1\)
 
Tính giá trị biểu thức \(A = \left( {4{x^3} + 3{x^2} - 2x} \right):\left( {{x^2} + \dfrac{3}{4}x - \dfrac{1}{2}} \right)\) tại \(x = 2\)
- 
                    A.
                    
\(8\)
 - 
                    B.
                    
\(9\)
 - 
                    C.
                    
\(10\)
 - 
                    D.
                    
\(12\)
 
Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\):
- 
                    A.
                    
\(a = 0\) và \(b = - 16\)
 - 
                    B.
                    
\(a = 0\) và \(b = 16\)
 - 
                    C.
                    
\(a = 0\) và \(b = 0\)
 - 
                    D.
                    
\(a = 1\) và \(b = 1\)
 
Xác định a để \(\left( {6{x^3} - 7{x^2} - x + a} \right):\left( {2x + 1} \right)\) dư \(2\):
- 
                    A.
                    
\( - 4\)
 - 
                    B.
                    
\(2\)
 - 
                    C.
                    
\( - 2\)
 - 
                    D.
                    
\(4\)
 
Cho \(P = \dfrac{{2{n^3} - 3{n^2} + 3n - 1}}{{n - 1}}\). Có bao nhiêu giá trị \(n \in Z\) để \(P \in Z\).
- 
                    A.
                    
0
 - 
                    B.
                    
1
 - 
                    C.
                    
2
 - 
                    D.
                    
Vô số
 
Lời giải và đáp án
Tìm kết quả của phép chia 8x4 - 2x3 cho 4x2
- 
                    A.
                    
2x2
 - 
                    B.
                    
4x5
 - 
                    C.
                    
2x2 - 0,5.x
 - 
                    D.
                    
2x2 + 1
 
Đáp án : C
Muốn chia đa thức cho đơn thức, ta chia từng hạng tử của đa thức cho đơn thức rồi tổng các kết quả thu được.
Ta có:
(8x4 - 2x3) : 4x2 = 8x4 : 4x2 - 2x3 : 4x2 = 2x2 – 0,5.x
Phép chia 2x4 – x3 + 2x – 1 cho x2 – x + 1 có thương là:
- 
                    A.
                    
0,5. x2 + 2x – 1
 - 
                    B.
                    
- 2x2 + 2x – 1
 - 
                    C.
                    
2x2 + x – 1
 - 
                    D.
                    
2x2 + x + 1
 
Đáp án : C
Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.

Phép chia 2x5 – 3x3 + 1 cho -2x3 + 3 có dư là:
- 
                    A.
                    
3x2 – 3,5
 - 
                    B.
                    
–x2 + 1,5
 - 
                    C.
                    
x2 - 1,5
 - 
                    D.
                    
-3x2 + 3,5
 
Đáp án : A
Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.

Vậy số dư là \(3x^2 - \frac{7}{2} = 3x^2 – 3,5\)
Thương của phép chia đa thức một biến bậc 6 cho đa thức một biến bậc 2 là đa thức bậc mấy?
- 
                    A.
                    
2
 - 
                    B.
                    
3
 - 
                    C.
                    
4
 - 
                    D.
                    
Không xác định được
 
Đáp án : C
Viết dạng tổng quát của phép chia đa thức bậc 6 cho đa thức bậc 2
Ta có: Đa thức biến x bậc 6 có dạng: a6 . x6 + a5 . x5 + a4 . x4 + a3 . x3 + a2 . x2 + a1. x + a0 (a6 khác 0)
Đa thức biến x bậc 2 có dạng: b2 . x2 + b1. x + b0 (b2 khác 0)
Khi chia đa thức biến x bậc 6 cho đa thức biến x bậc 2, đầu tiên, ta lấy hạng tử : a6 . x6 chia cho b2 . x2 nên thu được đa thức thương có bậc là 6 – 2 = 4
Tìm đa thức bị chia biết đa thức chia là \(\left( {{x^2} + x + 1} \right)\), thương là \(\left( {x + 3} \right)\), dư là \(x - 2\):
- 
                    A.
                    
\({x^3} + 4{x^2} + 5x + 1\)
 - 
                    B.
                    
\({x^3} - 4{x^2} + 5x + 1\)
 - 
                    C.
                    
\({x^3} - 4{x^2} - 5x + 1\)
 - 
                    D.
                    
\({x^3} + 4{x^2} - 5x + 1\)
 
Đáp án : A
Tìm đa thức A thỏa mãn A = B. Q + R
Trong đó, A là đa thức bị chia, B là đa thức chia, Q là thương, R là dư
Ta có: Đa thức bị chia = \(\left( {{x^2} + x + 1} \right)\). \(\left( {x + 3} \right)\) + \(x - 2\)
= x2 . (x + 3) + x. (x+3) + 1. (x+3) + x – 2
= x2 . x + x2 . 3 + x .x + x . 3 + 1. x + 1.3 + x – 2
= x3 + 3x2 + x2 + 3x + x + 3 + x – 2
= x3 + (3x2 + x2 ) + (3x + x + x ) + (3 – 2)
= x3 + 4x2 + 5x + 1
Tính giá trị biểu thức \(A = \left( {4{x^3} + 3{x^2} - 2x} \right):\left( {{x^2} + \dfrac{3}{4}x - \dfrac{1}{2}} \right)\) tại \(x = 2\)
- 
                    A.
                    
\(8\)
 - 
                    B.
                    
\(9\)
 - 
                    C.
                    
\(10\)
 - 
                    D.
                    
\(12\)
 
Đáp án : A
+) Chia đa thức cho đa thức: Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Thay x = 2 vào đa thức thương vừa thu được

Tại \(x = 2\) , ta có: \(A = 4x = 4.2 = 8\)
Xác định hằng số \(a\) và \(b\) sao cho \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\):
- 
                    A.
                    
\(a = 0\) và \(b = - 16\)
 - 
                    B.
                    
\(a = 0\) và \(b = 16\)
 - 
                    C.
                    
\(a = 0\) và \(b = 0\)
 - 
                    D.
                    
\(a = 1\) và \(b = 1\)
 
Đáp án : A
+) Chia đa thức cho đa thức: Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Biện luận để \(\left( {{x^4} + ax + b} \right) \vdots \left( {{x^2} - 4} \right)\) thì dư = 0, tìm a,b

Để \({x^4} + ax + b\) chia hết cho \({x^2} - 4\) thì
\(ax + b + 16 = 0 \)
\(ax = 0\) và \(b + 16 = 0\)
suy ra \(a = 0\) và \(b = - 16\)
Xác định a để \(\left( {6{x^3} - 7{x^2} - x + a} \right):\left( {2x + 1} \right)\) dư \(2\):
- 
                    A.
                    
\( - 4\)
 - 
                    B.
                    
\(2\)
 - 
                    C.
                    
\( - 2\)
 - 
                    D.
                    
\(4\)
 
Đáp án : D
+) Chia đa thức cho đa thức: Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Biện luận để dư = 2

Để \(6{x^3} - 7{x^2} - x + a\) chia \(2x + 1\) dư \(2\) thì \(a - 2 = 2 \Leftrightarrow a = 4\).
Cho \(P = \dfrac{{2{n^3} - 3{n^2} + 3n - 1}}{{n - 1}}\). Có bao nhiêu giá trị \(n \in Z\) để \(P \in Z\).
- 
                    A.
                    
0
 - 
                    B.
                    
1
 - 
                    C.
                    
2
 - 
                    D.
                    
Vô số
 
Đáp án : C
- Đặt phép chia.
- Để thỏa mãn điều kiện của đề bài thì số dư cuối cùng phải chia hết cho số chia nên số chia là ước của số dư cuối cùng.
- Lập bảng thử chọn để chọn ra giá trị của \(n\)thỏa mãn.

Vậy \(2{n^3} - 3{n^2} + 3n - 1 = \left( {2{n^2} - n + 2} \right)\left( {n - 1} \right) + 1\)
Để \(2{n^3} - 3{n^2} + 3n - 1\) chia hết cho \(n - 1\) thì \(1\) chia hết cho \(n - 1\).
\( \Rightarrow \left( {n - 1} \right) \in \left\{ {1; - 1} \right\}\)
Do đó n \( \in \) {0;2} để \(P \in Z\)
Vậy có 2 giá trị n thỏa mãn.
Luyện tập và củng cố kiến thức Bài 27: Phép nhân đa thức một biến Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 26: Phép cộng và phép trừ đa thức một biến Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 25: Đa thức một biến Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 24: Biểu thức đại số Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác Toán 7 Kết nối tri thức
 - Trắc nghiệm Bài 36: Hình hộp chữ nhật và hình lập phương Toán 7 Kết nối tri thức
 - Trắc nghiệm Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Toán 7 Kết nối tri thức
 - Trắc nghiệm Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác Toán 7 Kết nối tri thức
 - Trắc nghiệm Bài 33: Quan hệ giữa ba cạnh trong một tam giác Toán 7 Kết nối tri thức
 
                
                            
                            
        