Lý thuyết Nguyên hàm Toán 12 Cánh Diều>
1. Khái niệm nguyên hàm Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x)=f(x) với mọi x thuộc K.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
1. Khái niệm nguyên hàm
|
Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K. |
Cho K là một khoảng, đoạn hoặc nửa khoảng của tập số thực R.
Giả sử hàm số F(x) là một nguyên hàm của f(x) trên K. Khi đó:
a) Với mỗi hằng số C, hàm số F(x) + C cũng là một nguyên hàm của f(x) trên K.
b) Nếu hàm số G(x) là một nguyên hàm của f(x) trên K thì tồn tại một hằng số C sao chp G(x) = F(x) + C với mọi x thuộc K.
Họ (hay tập hợp) tất cả các nguyên hàm của hàm số f(x) trên K được kí hiệu là:
\(\int {f(x)dx = F(x) + C} \).
2. Tính chất của nguyên hàm
|

Các bài khác cùng chuyên mục




