Lý thuyết Đường thẳng và mặt phẳng trong không gian - SGK Toán 11 Kết nối tri thức


1. Khái niệm mở đầu

1. Khái niệm mở đầu

 

Hình ảnh về mặt phẳng

- Để biểu diễn mặt phẳng ta thường dùng 1 hình bình hành như hình vẽ:

 

- Để kí hiệu mặt phẳng ta dùng chữ cái in hoa hoặc chữ cái Hy Lạp đặt trong dấu ngoặc ( ).

VD: Mặt phẳng (P), mặt phẳng (\(\alpha \)).

- Điểm A thuộc mặt phẳng (P), ta kí hiệu \(A \in (P)\), điểm B không thuộc mặt phẳng (P) ta kí hiệu \(B \notin (P)\).Nếu \(A \in (P)\)ta còn nói A nằm trên (P) hoặc (P) chứa A hoặc (P) đi qua A.

*Quy tắc biểu diễn hình:

- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.

- Hình biểu diễn của hai đường thẳng song song là 2 đường thẳng song song, của 2 đường thẳng cắt nhau là 2 đường thẳng cắt nhau.

- Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng.

- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.

2. Các tính chất thừa nhận

- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt.

- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.

- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.

- Nếu có một đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì tất cả các điểm của đường thẳng đều thuộc mặt phẳng đó.

- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu \(d \subset (P)\) hoặc .

- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu .

- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hìn\(d = (P) \cap (Q)\)h học phẳng đều đúng.

3. Xác định một mặt phẳng

Một mặt phẳng hoàn toàn được xác định khi biết nó đi qua 3 điểm không thẳng hàng.

Một mặt phẳng được hoàn toàn xác định khi biết nó đi qua một điểm và chứa 1 đường thẳng không đi qua điểm đó.

Một mặt phẳng được hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau.

4. Hình chóp và hình tứ diện

Cho đa giác lồi \({A_1}{A_2}...{A_n}\) và một điểm S nằm ngoài mặt phẳng chứa đa giác đó. Nối S với các đỉnh \({A_1},{A_2},...,{A_n}\)để được n tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\). Hình gồm n tam giác  \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\)và đa giác  \({A_1}{A_2}...{A_n}\)được gọi là hình chóp và kí hiệu là \(S.{A_1}{A_2}...{A_n}\).

Trong hình chóp \(S.{A_1}{A_2}...{A_n}\)điểm S được gọi là đỉnh và đa giác\({A_1}{A_2}...{A_n}\) được gọi là mặt đáy, các tam giác \(S{A_1}{A_2},S{A_2}{A_3},...,S{A_n}{A_1}\)được gọi là các mặt bên; các cạnh \(S{A_1},S{A_2},...,S{A_n}\)được gọi là cạnh bên; các cạnh\({A_1}{A_2},{A_2}{A_3}...,{A_n}{A_1}\) được gọi là các cạnh đáy.

VD: Hình chóp tứ giác S.ABCD

 

Cho 4 điểm A, B, C, D không đồng phẳng. Hình gồm 4 tam giác ABC, ABD, ACD và BCD được gọi là hình tứ diện, kí hiệu là ABCD.

 

Trong đó, các điểm A, B, C, D được gọi các đỉnh của tứ diện, các đoạn thẳng AB, BC, CD, DA, BD,AC được gọi là cạnh của tứ diện; các tam giác ABC, ABD, ACD và BCD gọi là mặt của tứ diện.

Hai cạnh không có đỉnh chung được gọi là hai cạnh đối diện, đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 1 trang 71 SGK Toán 11 tập 1 - Kết nối tri thức

    Chấm phạt đền trên sân bóng đá cho ta hình ảnh về một điểm thuộc một mặt phẳng. Hãy tìm thêm các ví dụ khác cũng gợi cho ta hình ảnh đó.

  • Giải mục 2 trang 72, 73, 74 SGK Toán 11 tập 1 - Kết nối tri thức

    Chiếc xà ngang đặt tựa lên hai điểm A, B của trụ nhảy thể hiện hình ảnh của một đường thẳng đi qua hai điểm đó. Có thể tìm được một đường thẳng khác cũng đi qua hai điểm A,B hay không?

  • Giải mục 3 trang 74, 75 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho đường thẳng d và điểm A không thuộc d. Trên đường thẳng d lấy hai điểm phân biệt B, C (H.4.9). Mặt phẳng (ABC) có chứa điểm A và đường thẳng d hay không? Mặt phẳng (ABC) có chứa hai đường thẳng AB và BC hay không?

  • Giải mục 4 trang 75, 76 SGK Toán 11 tập 1 - Kết nối tri thức

    Các hình ảnh dưới đây có đặc điểm chung nào với hình chóp tam giác đều mà em đã học ở lớp 8?

  • Bài 4.1 trang 77 SGK Toán 11 tập 1 - Kết nối tri thức

    Trong không gian, cho hai đường thẳng a,b và mặt phẳng (P). Những mệnh đề nào sau đây là đúng? a) Nếu a chứa một điểm nằm trong (P) thì a nằm trong (P) b) Nếu a chứa hai phân biệt thuộc (P) thì a nằm trong (P) c) Nếu a và b cùng nằm trong (P) thì giao điểm (nếu có) của a và b cũng nằm trong (P) d) Nếu a nằm trong (P) và a cắt b thì b nằm trong (P)

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí