Lý thuyết cộng, trừ số hữu tỉ


Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức ta phải đổi dấu số hạng đó

1. Cộng trừ số hữu tỉ

Viết hai số hữu tỉ \(x, y\) dưới dạng:

\(x =  \dfrac{a}{m} ,\; y = \dfrac{b}{m}\) (\( a, b, m ∈\mathbb Z, m > 0\))

Khi đó:

\(x + y =   \dfrac{a}{m} +  \dfrac{b}{m}= \dfrac{a + b}{m}\)

\(x - y = x + (-y) = \dfrac{a}{m} +\left( { - \dfrac{b}{m}} \right)\)\(\,= \dfrac{a - b}{m}\)

Ví dụ:  Tính \(\frac{{ - 5}}{{12}} + \frac{{ - 1}}{4}\)

Ta có:

\(\frac{{ - 5}}{{12}} + \frac{{ - 1}}{4} = \frac{{ - 5 + \left( { - 1} \right).3}}{{12}} \)\(= \frac{{ - 8}}{{12}} = \frac{{ - 2}}{3}\)

2. Quy tắc " chuyển vế"

Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức ta phải đổi dấu số hạng đó

Tổng quát: Với mọi \(x, y , z ∈\mathbb Q\), ta có:

\(x + y = z \Rightarrow x = z-y\).

Ví dụ: Tìm \(x\) biết \(x + \frac{1}{2} = \frac{3}{4}\)

Ta có: 

\(x + \frac{1}{2} = \frac{3}{4}\)

\(x\,\, = \frac{3}{4} - \frac{1}{2}\)

\(x = \frac{3}{4} - \frac{2}{4}\)

\(x = \frac{1}{4}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 154 phiếu

Các bài liên quan: - Bài 2. Cộng, trừ số hữu tỉ

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài