Lý thuyết Cấp số nhân - SGK Toán 11 Chân trời sáng tạo>
1. Cấp số nhân
1. Cấp số nhân
Cấp số nhân là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q, nghĩa là:
\({u_n} = {u_{n - 1}}.q,n \in {\mathbb{N}^*}\)
Số q được gọi là công bội của cấp số nhân.
* Chú ý: Dãy \(\left( {{u_n}} \right)\) là cấp số nhân thì \({u_k}^2 = {u_{k - 1}}.{u_{k + 1}}\left( {k \ge 2} \right)\).
2. Số hạng tổng quát của cấp số nhân
Nếu một cấp số nhân có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\)của nó được xác định bởi công thức
\({u_n} = {u_1}.{q^{n - 1}},n \ge 2\)
3. Tổng của n số hạng đầu của một cấp số nhân
Cho cấp số nhân \(\left( {{u_n}} \right)\)với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n}\). Khi đó
\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
- Giải mục 1 trang 57, 58 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 59 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 3 trang 59, 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 1 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo