Giải mục 2 trang 70 SGK Toán 9 tập 1 - Kết nối tri thức


Cho tam giác ABC vuông tại C, có (widehat A = alpha ,widehat B = beta ) (H.4.9) . Hãy viết các tỉ số lượng giác của góc (alpha ,beta ) theo độ dài các cạnh của tam giác ABC. Trong các tỉ số đó, cho biết các cặp tỉ số bằng nhau.

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 4 trang 70 SGK Toán 9 Kết nối tri thức

Cho tam giác ABC vuông tại C, có \(\widehat A = \alpha ,\widehat B = \beta \) (H.4.9) . Hãy viết các tỉ số lượng giác của góc \(\alpha ,\beta \) theo độ dài các cạnh của tam giác ABC. Trong các tỉ số đó, cho biết các cặp tỉ số bằng nhau.

Phương pháp giải:

Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của góc \(\alpha \), kí hiệu \(\sin \widehat B\)

Tỉ số giữa cạnh kề và cạnh huyền gọi là cosin của góc \(\alpha \), kí hiệu \(\cos \widehat B\)

Tỉ số giữa cạnh đối và cạnh kề của góc \(\alpha \) gọi là \(\tan \widehat \alpha \)

Tỉ số giữa cạnh kề và cạnh đối của góc \(\alpha \) gọi là \(\cot \widehat \alpha \)

Lời giải chi tiết:

Ta có:

\(\sin \alpha  = \frac{{BC}}{{AB}};\) \(\cos \alpha  = \frac{{AC}}{{AB}};\) \(\tan \alpha  = \frac{{BC}}{{AC}};\) \(\cot \alpha  = \frac{{AC}}{{BC}}\)

\(\sin \beta  = \frac{{AC}}{{AB}};\) \(\cos \beta  = \frac{{BC}}{{AB}};\) \(\tan \beta  = \frac{{AC}}{{BC}};\) \(\cot \beta  = \frac{{BC}}{{AC}}\)

Từ đó ta có

\(\sin \alpha  = \cos \beta ;\) \(\cos \alpha  = \sin \beta ;\) \(\tan \alpha  = \cot \beta ;\) \(\cot \alpha  = \tan \beta .\)

LT3

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 3 trang 70 SGK Toán 9 Kết nối tri thức

Hãy giải thích tại sao \(\sin {35^0} = \cos {55^0},\tan {35^0} = \cot {55^0}.\)

Phương pháp giải:

Nếu hai góc phụ nhau (tổng số đo hai góc bằng \({90^0}\)) thì sin góc này bằng cosin góc kia, tan góc này bằng cot góc kia.

Lời giải chi tiết:

Vì \({35^0} + {55^0} = {90^0}\) nên \(\sin {35^0} = \cos {55^0},\tan {35^0} = \cot {55^0}.\)


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí