 Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                                                
                            Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT
                         Bài 11. Tỉ số lượng giác của góc nhọn trang 71, 72, 73 ..
                                                        Bài 11. Tỉ số lượng giác của góc nhọn trang 71, 72, 73 ..
                                                    Giải câu hỏi trắc nghiệm trang 72 vở thực hành Toán 9>
Cho tam giác ABC có (widehat A = {90^o}) (H 4.2). A. (sin B = frac{{AB}}{{BC}}). B. (cos C = frac{{AC}}{{AB}}). C. (tan B = frac{{AC}}{{AB}}). D. (cot C = frac{{AB}}{{BC}}).
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Chọn phương án đúng trong mỗi câu sau:
Câu 1
Trả lời Câu 1 trang 72 Vở thực hành Toán 9
Cho tam giác ABC có \(\widehat A = {90^o}\) (H 4.2).
 
A. \(\sin B = \frac{{AB}}{{BC}}\).
B. \(\cos C = \frac{{AC}}{{AB}}\).
C. \(\tan B = \frac{{AC}}{{AB}}\).
D. \(\cot C = \frac{{AB}}{{BC}}\).
Phương pháp giải:
Xét tam giác ABC vuông tại A có góc nhọn B bằng \(\alpha \). Ta có:
+ Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của \(\alpha \).
+ Tỉ số giữa cạnh kề và cạnh huyền gọi là cos của \(\alpha \).
+ Tỉ số giữa cạnh đối và cạnh kề gọi là tan của \(\alpha \).
+ Tỉ số giữa cạnh kề và cạnh đối gọi là cot của \(\alpha \).
Lời giải chi tiết:
Vì tam giác ABC có \(\widehat A = {90^o}\) nên \(\tan B = \frac{{AC}}{{AB}}\)
Chọn C
Câu 2
 Trả lời Câu 2 trang 72 Vở thực hành Toán 9
Trả lời Câu 2 trang 72 Vở thực hành Toán 9
Cho tam giác ABC có \(\widehat A = {90^o}\) và \(\widehat C = {30^o}\) như trên Hình 4.3. Tìm khẳng định sai trong các khẳng định sau?
 
A. \(\sin B = \frac{{\sqrt 3 }}{2}\).
B. \(\cos C = \frac{{\sqrt 3 }}{2}\).
C. \(\tan B = \sqrt 3 \).
D. \(\cot B = \frac{1}{2}\).
Phương pháp giải:
+ Tính góc B.
+ Sử dụng bảng giá trị lượng giác của các góc 30 độ và 60 để tính.
Lời giải chi tiết:
Vì tam giác ABC có \(\widehat A = {90^o}\) nên \(\widehat B = {90^o} - \widehat C = {60^o}\).
Suy ra \(\sin B = \cos C = \sin {60^o} = \frac{{\sqrt 3 }}{2};\tan B = \tan {60^o} = \sqrt 3 ;\cot B = \cot {60^o} = \frac{{\sqrt 3 }}{3}\).
Chọn D
Câu 3
Trả lời Câu 3 trang 72 Vở thực hành Toán 9
Cho \(\alpha \), \(\beta \) là hai góc nhọn trong tam giác ABC (H.4.4). Khi đó
 
A. \(\sin \alpha = \tan \beta \).
B. \(\cos \alpha = \cot \beta \).
C. \(\tan \alpha = - \cot \beta \).
D. \(\cot \alpha = \tan \beta \).
Phương pháp giải:
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Lời giải chi tiết:
Vì tam giác ABC vuông tại C nên \(\widehat A + \widehat B = {90^o}\), suy ra \(\alpha + \beta = {90^o}\). Do đó, \(\cot \alpha = \tan \beta \).
Chọn D
Câu 4
Trả lời Câu 4 trang 72 Vở thực hành Toán 9
A. \(\sin {82^o} = - \cos {8^o}\).
B. \(\cos {75^o} = \sin {16^o}\).
C. \(\cot {52^o} = - \tan {28^o}\).
D. \(\tan {30^o}40' = \cot {59^o}20'\).
Phương pháp giải:
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Lời giải chi tiết:
Vì \({30^o}40' + {59^o}20' = {90^o}\) nên \(\tan {30^o}40' = \cot {59^o}20'\)
Chọn D
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 1 trang 73 vở thực hành Toán 9
- Giải bài 2 trang 73 vở thực hành Toán 9
- Giải bài 3 trang 74 vở thực hành Toán 9
- Giải bài 4 trang 74 vở thực hành Toán 9
- Giải bài 5 trang 74 vở thực hành Toán 9
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            