Giải bài tập 6.47 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức>
Giải các phương trình sau: a) (5{x^2} - 6sqrt 5 x + 2 = 0); b) (2{x^2} + 2sqrt 6 x + 3 = 0).
Đề bài
Giải các phương trình sau:
a) \(5{x^2} - 6\sqrt 5 x + 2 = 0\);
b) \(2{x^2} + 2\sqrt 6 x + 3 = 0\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b - \sqrt {\Delta '} }}{a}\).
+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b'}}{a}\).
+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết
a) Vì \(\Delta ' = {\left( { - 3\sqrt 5 } \right)^2} - 5.2 = 35 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{3\sqrt 5 + \sqrt {35} }}{5};{x_2} = \frac{{3\sqrt 5 - \sqrt {35} }}{5}\).
b) Vì \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0\) nên phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}\)
- Giải bài tập 6.48 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.49 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.51 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 6.52 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục