Giải bài tập 4.9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá>
Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.
Đề bài
Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.
Phương pháp giải - Xem chi tiết
Để tính nhiệt độ của nước tại thời điểm \(t = 30\) phút, ta làm như sau:
- Tìm hàm nhiệt độ \(T(t)\) dựa vào hàm \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\).
- Xác định C từ điều kiện \(T(0) = 95\).
- Thay \(t = 30\) vào \(T(t)\) và tính nhiệt độ.
Lời giải chi tiết
Ta biết rằng tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm \(t\) phút được cho bởi:
\(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)
Để tìm hàm số \(T(t)\), ta sẽ tích phân hàm \(T'(t)\):
\(T(t) = \int {T'} (t){\mkern 1mu} dt = \int - \frac{3}{2}{e^{ - \frac{t}{{50}}}}{\mkern 1mu} dt\)
Sử dụng phương pháp thay biến để tính tích phân. Đặt:
\(u = - \frac{t}{{50}} \Rightarrow du = - \frac{1}{{50}}{\mkern 1mu} dt \Rightarrow dt = - 50{\mkern 1mu} du\)
Thay vào tích phân:
\(\int - \frac{3}{2}{e^{ - \frac{t}{{50}}}}{\mkern 1mu} dt = \int - \frac{3}{2}{e^u} \cdot ( - 50){\mkern 1mu} du\)
\( = 75\int {{e^u}} {\mkern 1mu} du\)
\( = 75{e^u} + C\)
\( = 75{e^{ - \frac{t}{{50}}}} + C\)
Vậy hàm số \(T(t)\) có dạng:
\(T(t) = 75{e^{ - \frac{t}{{50}}}} + C\)
Theo đề bài khi \(t = 0\) phút, nhiệt độ của nước là 95°C:
\(T(0) = 95\)
\(95 = 75{e^0} + C\)
\(95 = 75 + C\)
\(C = 20\)
Vậy hàm số \(T(t)\) là:
\(T(t) = 75{e^{ - \frac{t}{{50}}}} + 20\)
Thay \(t = 30\) vào hàm số \(T(t)\):
\(T(30) = 75{e^{ - \frac{{30}}{{50}}}} + 20 = 75{e^{ - \frac{3}{5}}} + 20 \approx 61,16\)
Vậy nhiệt độ của nước trong cốc tại thời điểm \(t = 30\) phút là khoảng \(61,16^\circ C\).
- Giải bài tập 4.8 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.7 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.6 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 4.4 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.20 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.19 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.18 trang 108 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.17 trang 107 SGK Toán 12 tập 2 - Cùng khám phá
- Giải bài tập 6.16 trang 107 SGK Toán 12 tập 2 - Cùng khám phá