Giải bài tập 4.5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá


Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).

Đề bài

Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).

Phương pháp giải - Xem chi tiết

Tính đạo hàm của \(F(x)\) để tìm hàm số \(f(x)\), sau đó tích phân \(f'(x)\) để tìm kết quả.     

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Đạo hàm của \(F(x)\):

\(f(x) = F'(x) = {e^x} + 2x\)

Do đó:

\(\int {f'} (x){\mkern 1mu} dx = f(x) + C = {e^x} + 2x + C\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí