Giải bài tập 4.2 trang 10 SGK Toán 12 tập 2 - Cùng khám phá


Tìm họ nguyên hàm của các hàm số sau: a) (f(x) = 4{x^5} + frac{x}{2}) b) (f(x) = 6{x^4} - frac{{{e^x}}}{2} + sin x) c) (f(x) = {5^x} - frac{4}{{xsqrt x }} + 3)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Tìm họ nguyên hàm của các hàm số sau:

a) \(f(x) = 4{x^5} + \frac{x}{2}\)

b) \(f(x) = 6{x^4} - \frac{{{e^x}}}{2} + \sin x\)

c) \(f(x) = {5^x} - \frac{4}{{x\sqrt x }} + 3\)

Phương pháp giải - Xem chi tiết

Tính nguyên hàm của từng thành phần trong hàm số. Áp dụng công thức tích phân cơ bản cho các hàm số mũ, hàm đa thức, và hàm lượng giác.

Lời giải chi tiết

a) Tìm nguyên hàm của \(f(x) = 4{x^5} + \frac{x}{2}\):

\(\int f (x){\mkern 1mu} dx = \int {\left( {4{x^5} + \frac{x}{2}} \right)} dx = \frac{{4{x^6}}}{6} + \frac{{{x^2}}}{4} + C = \frac{{2{x^6}}}{3} + \frac{{{x^2}}}{4} + C\)

b) Tìm nguyên hàm của \(f(x) = 6{x^4} - \frac{{{e^x}}}{2} + \sin x\):

\(\int f (x){\mkern 1mu} dx = \int {\left( {6{x^4} - \frac{{{e^x}}}{2} + \sin x} \right)} dx = \frac{{6{x^5}}}{5} - \frac{{{e^x}}}{2} - \cos x + C\)

c) Tìm nguyên hàm của \(f(x) = {5^x} - \frac{4}{{x\sqrt x }} + 3\):

\(\int f (x){\mkern 1mu} dx = \int {\left( {{5^x} - \frac{4}{{x\sqrt x }} + 3} \right)} dx = \frac{{{5^x}}}{{\ln 5}} - \frac{8}{{\sqrt x }} + 3x + C\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí