Giải bài tập 3.8 trang 51 SGK Toán 9 tập 1 - Kết nối tri thức>
Rút gọn biểu thức (sqrt {2left( {{a^2} - {b^2}} right)} .sqrt {frac{3}{{a + b}}} ) (với (a ge b > 0)) .
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Rút gọn biểu thức \(\sqrt {2\left( {{a^2} - {b^2}} \right)} .\sqrt {\frac{3}{{a + b}}} \) (với \(a \ge b > 0\)) .
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức \(\sqrt A .\sqrt B = \sqrt {A.B} \).
Lời giải chi tiết
\(\begin{array}{l}\sqrt {2\left( {{a^2} - {b^2}} \right)} .\sqrt {\frac{3}{{a + b}}} \\ = \sqrt {2\left( {{a^2} - {b^2}} \right).\frac{3}{{a + b}}} \\ = \sqrt {2\left( {a - b} \right)\left( {a + b} \right)\frac{3}{{a + b}}} \\ = \sqrt {6\left( {a - b} \right)} \end{array}\)
- Giải bài tập 3.9 trang 51 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.10 trang 51 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.11 trang 51 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 3.7 trang 51 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải mục 2 trang 50, 51 SGK Toán 9 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục